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Implementation Detail
In this section, we introduce the detailed methods of lineariz-
ing the projection distortion and the additional experiment
result about the transferability of adversarial examples.

Proof of the direction constraint
Firstly we assume the z-axes of the world and camera coor-
dinate system coincide (otherwise, we rotate the point cloud
to make their z-axes coincide). Then we have the following
theorem.

Theorem 1. When the camera and world coordinate sys-
tems’ z-axes coincide, only perturbing on the z-axis has a
very small influence on the corresponding pixel coordinate.

Proof. Because the z-axis of the world coordinate system
and camera coordinate system coincides, the point’s coordi-
nate in the camera coordinate system can be deduced by[
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According to the camera imaging model, the transition
matrix from camera coordinate to image coordinate is
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where (u′

c, v
′
c) is the point’s corresponding pixel coordinate

in Ic after the perturbation. fc is the focal length, dx and
dy are the pixel’s physical size. Therefore, when |∆z| <
10−2|z|, uc < 100, vc < 100, we have
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Therefore, when we only add small perturbations on the z-
axis, the pixels’ coordinates in modulated images are almost
uninfluenced. □

When the camera and world coordinate systems’ z-axes
do not coincide, we can suppose the perspective projection
matrix is Ac = K[R T ]. Then we just need to rotate the

original point cloud by P ′ = K ·R · P , then add noises on
the z axis. The adversarial point cloud is

P ∗ = R−1K−1[K ·R · P + [0, 0, δ]]

The pixel coordinate is

z∗[x∗, y∗, 1]T = Ac · [P ∗, 1]T

= K[R T ][P ∗, 1]T
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, when z

z+δ ≈ 1, only the depth is changed and the pixel
coordinates are unchanged.

Modeling the projector distortion
In some literature, the distortion is modeled by an ex-
ponential function (Zhang 2015), which is formulated by
Gactual = Gγ

org. In this case, we only need to estimate the
γ parameters, then the pre-correction function of gray-scale
distortion can be formulated by Gcorr = G

1/γ
org . In the ex-

periment, we find that using an exponential function may
introduce small errors while using a cubic polynomial func-
tion can better formulate the distortion. Therefore, we sup-
pose the distortion function is a cubic polynomial function
Ic = f(Ip) = aI3p + bI2p + cIp + d. We use an intermedi-
ate transformation g(Ip) to linearize the distortion. That is,
Ic = f(g(Ip)) = αIp + β. To simplify the calculation pro-
cess, we propose a simple algorithm to find the intermediate
pre-correction transformation. We firstly project a group of
uniform gray-scale images with gray-scale Gorg, and calcu-
late the average gray-scale of human faces Gactual in the
captured images. The algorithm of finding the intermediate
pre-correction transformation is shown in Alg.1.

The fitting result is shown in Fig.1. The red line is the
relationship between the original gray value and the actual
gray value. The blue line is the ideal responding function.
The green line is the pre-correction function, and the purple
line is the linearized gray distortion function. The green circle



Algorithm 1: Find the pre-correction transformation
Input: Original gray-scale value Gorg and captured actual
gray-scale value Gactual.
Output: The pre-correction function Gcorr = g(Gorg)
Initial: g ← minGorg, Gcorr ← [ ].

1: Fit Gactual = f(Gorg) by a cubic polynomial function
f .

2: Find a linear function y = αx + β that pass through
(minGorg, f(minGorg) and (maxGorg, f(maxGorg).

3: Find the corresponding pre-correction grayscale value:
4: while g ≤ maxGorg do
5: greal ← α× g + β
6: Solve gcorr in function greal = f(gcorr), s.t. gcorr ∈

[0, 255].
7: Gcorr.append(gcorr).
8: g ← g + 1 ;
9: end while

10: Fitt Gcorr = g(Gorg) using a cubic polynomial function.
11: return g

in the graph is the pre-corrected gray value corresponding to
the original gray value shown in the red circle.
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Figure 1: Gray scale value distortion result. The red line is
the projector’s responding function. The green line is the
pre-corrected gray value.

We can also use tanh function to fit this distortion, as
shown in Figure 2. We use MATLAB’s fit function to get the
hyperparameters.
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Figure 2: Fitting the projector distortion through tanh func-
tion.

Visualization of sensitivity maps
We visualize some sensitive maps in Figure 4. As we can see,
the picture is highly sensitive in central and high-variance
areas, which is consistent with human feeling.
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Figure 3: The face point cloud and sensitivity maps. The first
row: the point cloud. The second row: the sensitivity maps

Visualization of the phase superposition attacks
As shown in Figure 4, we project adversarial perturbations
onto the original faces. The perturbation is very small and
hard to notice.

Transferability of adversarial examples
As mentioned in the paper, we find that 3D-TI loss can im-
prove the transferability of 3D adversarial attacks, especially
for dodging attacks. We have shown the transferability of
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Figure 4: Visualizing the phase superposition attack. (a) the
fringe image. (b) the perturbations (c) the modulated image.

dodging attacks using Chamfer+kNN distance without and
with the 3D-TI module. In this subsection, we show the trans-
ferability of dodging attacks using Chamfer distance without
and with the 3D-TI module. Table.1 and Table.2. We can see
that transferability significantly improves.

subs.
victim PN MSG SSG DN CN

PointNet 1.00 0.05 0.10 0.09 0.12
PN++(MSG) 0.21 1.00 0.26 0.28 0.14
PN++(SSG) 0.25 0.43 1.00 0.32 0.23
DGCNN 0.24 0.37 0.22 1.00 0.11
CurveNet 0.25 0.37 0.38 0.40 1.00

Table 1: The transferability of the adversarial point clouds by
original Chamfer loss. The horizontal column is the substitute
model, the same below.

subs.
victim PN MSG SSG DN CN

PointNet 1.00 0.21 0.16 0.22 0.10
PN++(MSG) 0.27 1.00 0.26 0.35 0.23
PN++(SSG) 0.37 0.46 1.00 0.55 0.30
DGCNN 0.44 0.52 0.49 1.00 0.27
CurveNet 0.27 0.44 0.45 0.47 1.00

Table 2: The transferability of the adversarial point clouds by
the 3D-TI Chamfer loss.
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