
Adaptive Plasticity Improvement for Continual Learning

Yan-Shuo Liang and Wu-Jun Li*

National Key Laboratory for Novel Software Technology,
Department of Computer Science and Technology, Nanjing University, P. R. China

liangys@smail.nju.edu.cn,liwujun@nju.edu.cn

1. More Details of DualGPM and API
1.1. Relationship between Input Space and Gradi-

ent Space

According to the finding of the existing works [3, 8], the
following conclusion holds:

Proposition 1. The gradient update of the linear or convo-
lution layer lies in the span of inputs.

Specifically, there are two conclusions:

• The gradient update of the linear layer lies in the span
of input.

• The gradient update of convolution filters lies in the
space spanned by patch vectors.

Linear Layer For the linear layer, we denote its forward
propagation as

hl = σl(W
T
l hl−1 + bl), (1)

where σl denotes activation function. Wl ∈ RdI×dO ,
hl−1 ∈ RdI , and hl ∈ RdO . dI and dO denote input and
output dimension, respectively. We further denote the loss
function as L. Through the chain rule, we can get the gra-
dient of Wl:

∂L

∂Wl
=

∂L

∂hl

∂hl

Wl
=

(
∂L

∂hl
⊙ σ

′

l

)
hT
l−1

=
[
a1hl−1, a2hl−1, ..., adO

hl−1

]
, (2)

where ⊙ denotes element-wise multiplication.
[a1, a2, ..., adO

]T denotes the vector ∂L
∂hl

⊙σ
′

l . Through (2),
we can find that each column of ∂L

∂Wl
can be represented

as input hl−1 multiplied by a real value ak (1 ≤ k ≤ dO).
Therefore, in the linear layer, each column of the gradient
∂L
∂Wl

lies in the span of input. The input matrix Rl,t in the
linear layer is got by computing [h1

l−1,h
2
l−1, ...,h

N
l−1].

*Wu-Jun Li is the corresponding author.

Convolution Layer For the convolution layer, we denote
its forward propagation as

hl = σl(Wl ∗ hl−1 + bl), (3)

where Wl ∈ RCO×CI×k×k, hl−1 ∈ RCI×hI×wI , and
hl ∈ RCO×hO×wO . CI and CO denote input and out-
put channels, respectively. k denotes kernel size. (hI , wI)
and (hO, wO) denote the input and output size of the fea-
ture, respectively. Through the reshaping process, we can
get

Wl ∈ RCO×CI×k×k ⇒ Ŵl ∈ R(CI×k×k)×CO , (4)

hl−1 ∈ RCI×hI×wI ⇒ ĥl−1 ∈ R(CI×k×k)×(hO×wO),
(5)

hl ∈ RCO×hO×wO ⇒ ĥl ∈ RCO×(hO×wO). (6)

Then the convolution operation ∗ can be transformed into
matrix multiplication, that is

ĥl = σl(Ŵ
T
l ĥl−1 + bl). (7)

Based on (7), the conclusion in the linear layer can be ap-
plied to the convolution layer. Since each column of ĥl−1 is
a patch vector with patch size k×k (equal to the kernel size),
we can get the conclusion in the convolution layer. The in-
put matrix Rl,t in the convolution layer is got by computing
[ĥ1

l−1, ĥ
2
l−1, ..., ĥ

N
l−1].

Please note that these two conclusions are for weight Wl

and not for bias bl, so no bias units are used. Since the
parameters of the neural network mainly exist in the weight
of each layer, the plasticity of the neural network will be
affected little without defining biases bl.

1.2. Space Transformation

We show that we can get orthogonal bases of M⊥
l,t by

performing SVD on the orthogonal bases of Ml,t. Specifi-
cally, we can prove the following theorem.

Theorem 2. For a subspace M with a set of orthogonal
bases M = [u1,u2, ...,um] ∈ Rd×m, if we perform SVD

1

of the matrix M (M = UΣV T), then the columns of U
which correspond to the zero singular values form a set of
orthogonal bases of M⊥. Here, M⊥ is defined as

M⊥ = {u⊥ ∈ Rd| ∀ u ∈ M, (u⊥)Tu = 0} (8)

Proof. Let matrix U = [Um,Ud−m]. The first m columns
Um correspond to non-zero singular values, and the last d−
m columns Ud−m correspond to zero singular values. Then
the SVD of M can be rewritten as

M =
[
Um,Ud−m

] [Σm

O

]
V T = Um(ΣmV T), (9)

where O represents a matrix of all zero elements.
On the one hand, since U is an orthogonal matrix, each

column in Um is orthogonal to each column of Ud−m.
Therefore, we can get UT

mUd−m = O. According to (9),
we have

MTUd−m = V ΣmUT
mUd−m = O. (10)

Equation (10) shows that each column of M is orthogonal
to each column of Ud−m. Therefore, each column of Ud−m

lies in the space M⊥.
On the other hand, since columns of U form a set of or-

thogonal bases of Rd, any vector v ∈ M⊥ can be denoted
as v = Ua, where a ∈ Rd. Furthermore, due to the defini-
tion of M⊥ (see (8)), we also have

MTv = 0 ⇒ V ΣmUT
mv = 0. (11)

Since matrix V Σm has full column rank, we can get
UT

mv = 0 from (11). Based on these, we have

UT
mv = 0 ⇒ UT

mUa = UT
m

[
Um,Ud−m

] [am

ad−m

]
= am = 0, (12)

where am and ad−m denote the components of a cor-
responding to Um and Ud−m, respectively. Therefore,
v = Ud−mad−m. Thus, any vector v ∈ M⊥ is the lin-
ear combination of the columns of Ud−m. Since we have
proved that each columns of Ud−m lies in the subspace
M⊥, columns of Ud−m form a set of orthogonal bases of
subspace M⊥.

1.3. Removing Subspace

In DualGPM, we need to remove subspace Y from M⊥
l,t

to get space M⊥
l,t+1, where Y denotes the subspace of M⊥

l,t

containing the gradient of the t-th task. We achieve this by
the following theorem.

Theorem 3. Let two spaces M, N satisfy N ⊆ M ⊆ Rd,
where dim(M) = m, dim(N) = n and n < m ≤ d. As-
sume M = [u1,u2, ...,um] ∈ Rd×m denotes the orthogo-
nal bases of M, N = [v1,v2, ...,vn] ∈ Rd×n denotes the

orthogonal bases of N . Let M̂ = M − N(N)TM . If
we perform SVD of the matrix M̂ (M̂ = UΣV T), then
the column vectors of U which correspond to the non-zero
singular values form a set of orthogonal bases of subspace
O, where

O = {u ∈ M| ∀v ∈ N ,vTu = 0}. (13)

Proof. Let matrix U = [Um,Ud−m]. The first m columns
Um correspond to non-zero singular values, and the last d−
m columns Ud−m correspond to zero singular values. Then
the SVD of M̂ can be rewritten as

M̂ =
[
Um,Ud−m

] [Σm

O

]
V T = Um(ΣmV T), (14)

where O represents a matrix of all zero elements.
On the one hand, it is easy to verify that

(M̂)TN = MTN −MTNNTN = 0. (15)

With (14) and (15), we have

(M̂)TN = V ΣT
mUT

mN = 0. (16)

Since matrix V Σm has full column rank, we can get
UT

mN = 0 from (16). Therefore, each column of Um lies
in the subspace O.

On the other hand, for any vector u ∈ O ⊆ M, there
exists a set of coefficients a ∈ Rm such that u = Ma.
Therefore, we have

u = Ma = M̂a+N(N)TMa =
[
Um,N

] [ΣmV Ta
(N)TMa

]
.

(17)

This means u can be denoted as a linear combination of the
columns of matrix [Um,N]. Since u is orthogonal to the
columns of N (see Definition (13)), NTMa must be zero.
Therefore, any vector u ∈ O can be denoted as a linear
combination of the columns of matrix Um. We have proved
that each column of Um lies in O. Therefore, columns of
Um form a set of orthogonal bases of subspace O.

1.4. Algorithm for Computing Gradient Retention
Ratio

We give the process of computing Gradient Retention
Ratio (GRR) in Algorithm 1. Please note that this process
requires only one more epoch computation.

2. More Details of Experimental Setup
2.1. Architecture Details

LeNet like Architecture LeNet-5 is used in existing work
GPM [3] and ADP [7]. Besides the output layer, this net-
work also consists of 2 convolution layers and 2 linear lay-
ers. The number of filters of the convolution layers from

Table 1. Statistics of three datasets

Split CIFAR100 CIFAR100-sup Split Mini-Imagenet

Task Number 20 20 20
Input Size 3× 32× 32 3× 32× 32 3× 84× 84

Classes per Task 5 5 5
Training Samples 2375 2375 2375
Valid Samples 125 125 125
Testing Samples 500 500 500

Table 2. Statistic of 5-Datasets, the input size is set as 3× 32× 32.

CIFAR10 MNIST SVHN Fashion MNIST notMNIST

Classes 10 10 10 10 10
Number of Samples (train) 4750 57000 69595 57000 16011
Number of Samples (val) 2500 3000 3662 3000 842
Number of Samples (test) 10000 10000 26032 10000 1873

Algorithm 1 Gradient Retention Ratio

1: Input: Current Task {Dt}Tt=1, network model f(·,Θ) with
L layers, Θ = {Wl,t−1}Ll=1, orthogonal bases memory
{M∗

l,t}Ll=1.
2: Output: Gradient Retention Ratio value {GRR(l, t)}Ll=1.
3: Initialize {GRR(l, t)}Ll=1 value: GRR(l, t)← 0;
4: b← 0;
5: for Bt sampled from Dt do
6: Compute the loss L(Bt;Θ) over Bt and get gradient gt =

[g1,t, g2,t..., gL,t];
7: Using M∗

l,t to perform operation by (3) or (4) of the paper
and get ĝl,t;

8: GRR(l, t)← GRR(l, t) +
||ĝl,t||22
||gl,t||22

;
9: b← b+ 1;

10: end for
11: GRR(l, t)← GRR(l, t)/b;

bottom to up is 10, 20. Both two layers have kernel size
5 × 5. The number of units of two linear layers is 800 and
500, respectively. After each convolution layer, 3× 3 max-
pooling with stride size 2 is applied.

AlexNet like Architecture This architecture is the same
as several existing works [3, 4]. Specifically, the network
consists of 3 convolution layers plus 2 linear layers. The
number of filters of the convolution layers from bottom to
up is 64, 128, and 256 with kernel sizes 4 × 4, 3 × 3, and
2×2, respectively. The number of units of two linear layers
is 2048. Rectified function is used as activations for all the
layers except the classifier layer. After each convolution

layer, 2× 2 max-pooling is applied. Dropout with ratio 0.2
is used for the first two layers and 0.5 for the rest layers.

Reduced ResNet18 Architecture This architecture is
the same as existing work [3] where the parameters of
ResNet18 are reduced. Specifically, each layer of reduced
ResNet18 is three times fewer features than the original ar-
chitecture. The average-pooling before the classifier layer
is set as 2× 2.

2.2. Datasets Statistic

We give detailed statistics of datasets in this section.
Specifically, Table 1 shows the detailed information of three
datasets, including CIFAR100-sup, Split CIFAR100, and
Split Mini-Imagenet. These datasets are constructed by one
dataset (CIFAR100 or Mini-Imagenet). Table 2 shows the
detailed information of 5-Datasets. This dataset is con-
structed by five different datasets and each dataset forms
a task of 5-Datasets.

2.3. Threshold Setting for Orthogonal Bases Updat-
ing

The set of threshold ϵth follows existing work GPM [3].
For the experiment of Split CIFAR100 with AlexNet archi-
tecture, threshold ϵth is set as 0.97 for all the layers and
increased by 0.0015 for each new task. For the experiment
of CIFAR100-sup with LeNet, ϵth is set as 0.98 for the first
layer and increased by 0.001 for each new task. For the ex-
periment of Split Mini-Imagenet with ResNet18, ϵth is set
as 0.985 for the first layer and increased by 0.0003 for each

Table 3. List of hyper-parameters for different methods

Methods Hyper-Parameters

EWC lr: 0.03 (5-Datasets), 0.05 (SCIFAR100, CIFAR100-sup), 0.1 (mini)
regular: 300 (SCIFAR100, CIFAR100-sup), 2000 (mini), 5000 (5-Datasets)

ER-Res lr: 0.05 (SCIFAR100, CIFAR100-sup), 0.1 (5-Datasets, mini)
memory: 2000 (SCIFAR100, CIFAR100-sup, mini), 3000 (5-Datasets)

GPM lr: 0.01 (SCIFAR100, CIFAR100-sup), 0.1 (5-Datasets, mini)

GEM lr: 0.05 (SCIFAR100, CIFAR100-sup)
memory strength: 0.5 (SCIFAR100, CIFAR100-sup)
memory: 2000 (SCIFAR100, CIFAR100-sup)

A-GEM lr: 0.05 (SCIFAR100, CIFAR100-sup), 0.1 (5-Datasets, mini)
memory: 2000 (SCIFAR100, CIFAR100-sup, mini), 3000 (5-Datasets)

FS-DGPM lr, η3: 0.01 (SCIFAR100, CIFAR100-sup)
lr for sharpness, η1: 0.001 (SCIFAR100), 0.01 (CIFAR100-sup)
lr for DGPM, η2: 0.01 (SCIFAR100, CIFAR100-sup)
memory: 900 (SCIFAR100), 1100 (CIFAR100-sup)

TRGP lr: 0.01 (SCIFAR100, CIFAR100-sup), 0.1 (5-Datasets, mini)
K: 2 (SCIFAR100, CIFAR100-sup, 5-Datasets, mini)
ϵ: 0.5 (SCIFAR100, CIFAR100-sup, 5-Datasets, mini)

API lr: 0.01 (SCIFAR100, CIFAR100-sup), 0.1 (5-Datasets, mini)
K: 10 (SCIFAR100, CIFAR100-sup, 5-Datasets, mini)
ρ: 0.5 (SCIFAR100, CIFAR100-sup, 5-Datasets, mini)

0 6 12 18
Number of Tasks

0

2

4

6

8

10

M
em

or
y
(M

)

(a) Variation of memory usage

Connector
TRGP
GPM
DualGPM

API-Total
API-Base
API-Param

0 1 2 3 4
Number of Tasks

0

2

4

6

8

10

M
em

or
y
(M

)

(b) Variation of memory usage

Connector
TRGP
GPM
DualGPM

API-Total
API-Base
API-Param

Figure 1. (a) Variation of memory usage for Split Mini-Imagenet. (b) Variation of memory usage for 5-Dataset.

new task. For the experiment of 5-Dataset with ResNet18
architecture, threshold ϵth is set as 0.965 for all the layers.

2.4. Hyper-Parameters

We give the hyper-parameters for each method in Ta-
ble 3. SCIFAR100 denotes Split CIFAR100 and mini de-
notes Split Mini-Imagenet. FS-DGPM, GPM and TRGP
are implemented by their official codes under MIT License.
EWC, GEM, ER-Res are implemented by the code provided
by FS-DGPM [1] under MIT License.

3. Additional Experimental Results

3.1. Memory Usage

Variation of Memory We show the variation of mem-
ory usage in the experiment of Split Mini-Imagenet and
5-Datasets. The memory usage of GPM increases all the
time. The memory usage of DualGPM increases first and
decreases later. However, the memory usage of API on Split
Mini-Imagenet differs from that of API on Split CIFAR100
and 5-Datasets. Specifically, API-Base first increases, then
decreases, and finally increases again. The second increase
in API-Base is because the dimension of bases increases
with the expansion of parameters Wl,t (see Equation (9) of

0 6 12 18
Number of Tasks

0

100

200

300

400

500

N
um

be
ro

fB
as
es

(a) 3-th layer of AlexNet

GPM
DualGPM
API

0 6 12 18
Number of Tasks

0

200

400

600

800

1000

N
um

be
ro

fB
as
es

(b) 4-th layer of AlexNet

GPM
DualGPM
API

0 6 12 18
Number of Tasks

500

1000

1500

N
um

be
ro

fB
as
es

(c) 5-th layer of AlexNet

GPM
DualGPM
API

0 1 2 3 4
Number of Tasks

120

140

160

180

200

220

240

260

N
um

be
ro

fB
as
es

(d) 7-th layer of ResNet

GPM DualGPM API

0 1 2 3 4
Number of Tasks

200

300

400

500

600

N
um

be
ro

fB
as
es

(e) 12-th layer of ResNet

GPM DualGPM API

0 1 2 3 4
Number of Tasks

200

300

400

500

600

N
um

be
ro

fB
as
es

(f) 16-th layer of ResNet

GPM DualGPM API

Figure 2. Variation of bases in different layers of AlexNet and ResNet.

the paper).
Variation of Bases We give the variation of bases in differ-
ent layers. Specifically, we show the variation of bases in
the 3-rd, 4-th, and 5-th layers of AlexNet when the model
learns on Split CIFAR100. We also show the variation of
bases in the 7-th, 12-th, and 16-th layers of ResNet when
the model learns on 5-Datasets. We can find that GPM in-
creases the bases all the time, while DualGPM and API do
not increase bases all the time and keep much fewer bases
than GPM in these layers.

3.2. Time Consumption

API expands the model’s parameters in each layer, and
the new task has access to more parameters to learn the
model than the old task. However, this increases the time
consumption in both the training and inference phases. Fig-
ure 3 gives the time consumption for different methods.
We can find that API does consume more time than GPM
in both the training and inference phases. However, the
time consumption of API is comparable with other methods.
Specifically, the training time of API is much less than FS-
DGPM on Split CIFAR100 and CIFAR100-sup. The train-
ing time of API is slightly less than that of TRGP on Split
CIFAR100 and 5-Datasets, and slightly larger than that of
TRGP on CIFAR100-sup. The average inference time of
API is less than TRGP on Split-CIFAR100 and 5-Datasets,
and slightly larger than TRGP on CIFAR100-sup.

3.3. More Comparison with Expansion-Based
Methods

We choose calibrating CNNs for lifelong learn-
ing (CCLL) [6] and rectification-based knowledge reten-

tion (RKR) [5] to compare with our API. Other expansion-
based methods have different experimental settings from
ours, and many hyperparameters are difficult to tune. Be-
sides, some methods that define a search space and use some
methods to search for expansion strategies incur high com-
putational costs. On the contrary, CCLL and RKR are sim-
ple and easy to implement, and they have demonstrated that
they outperform many expansion-based methods.

We compare API with CCLL and RKR on Split CI-
FAR100 and Split Mini-Imagenet. The experimental set-
ting is the same as that of the experiments in the paper. We
tune the hyperparameter K in these two methods so that
their model capacity is not smaller than that of our method.
Please note that larger K in these two methods means larger
model capacity and higher accuracy. The results are given
in Table 4. We can find that API also gets the best results
with the smallest model capacity.

3.4. More Comparison with Memory-Based Meth-
ods

Recursive gradient optimization (RGO) [2] is also an
memory-based method that rectifies new task gradient layer
by layer to overcome catastrophic forgetting. This method
directly maintains projection matrix Pl in memory. Please
note that GPM maintains orthogonal bases Ml in memory
and DualGPM maintains orthogonal bases Ml or M⊥

l in
memory. When learning the new task, GPM and DualGPM
get projection matrix Pl = MlM

T
l .

Compared with RGO, GPM and DualGPM use less
memory. Specifically, RGO keeps Pl in memory and re-
quires d2l parameters. GPM keeps Ml in memory and re-
quires dim(Ml)dl parameters. DualGPM keeps Ml or

20-Split CIFAR100 CIFAR100-sup 5-Datasets
0

2000

4000

6000

8000
Ti
m
e
(s
)

(a) Training Time

FS-DGPM
GPM

TRGP
ER

DualGPM
API

20-Split CIFAR100 CIFAR100-sup
0.00

0.01

0.02

0.03

0.04

0.05

0.06

Ti
m
e
(s
)

GPM
TRGP
ER
DualGPM
API

5-Datasets
0.0

0.5

1.0

1.5

2.0

2.5

Ti
m
e
(s
)

(b) Inference Time

Figure 3. (a) Training time of different methods on three different datasets. (b) Average inference time of different methods on three
different datasets.

Table 4. The performance for different expansion-based methods on Split CIFAR100 dataset and Split Mini-Imagenet.

SPLIT CIFAR100 SPLIT MINI-IMAGENET

METHODS ACC (%) CAPACITY (%) ACC (%) CAPACITY (%)

RKR 77.5 ± 0.5 107 63.7 ± 2.0 132
CCLL 75.4 ± 0.3 105 65.7 ± 0.5 132
API 81.4 ± 0.4 104 65.9 ± 0.6 127

M⊥
l in memory and requires min(dim(Ml),dim(M⊥

l))dl
parameters in memory. Since

min(dim(Ml),dim(M⊥
l)) ≤ dim(Ml) ≤ dl, (18)

GPM and DualGPM use less memory than RGO. Further-
more, since dim(Ml) increases with the increase of tasks,
DualGPM uses much less memory than RGO and GPM
when the number of tasks is large.

We compare RGO with our methods on Split CIFAR100
and Split Mini-Imagenet. We use the official implementa-
tion of RGO and keep its architecture consistent with our
methods. Table 5 gives the comparison between RGO and
our methods. ‘AVG-MEMORY’ denotes the average mem-
ory used when the model learns each new task. RGO gets
similar accuracy to API on Split CIFAR100 but uses much
more memory than GPM and our method. On Split Mini-
Imagenet, RGO gets lower accuracy than our methods and
GPM, and its average memory usage is more than GPM,
DualGPM and API.

3.5. Variation of AGRR

We show the variation of AGRR and average gradient
norm during the learning of Split CIFAR100 in Figure 4.
We can find that both AGRR and average gradient norm
decrease with the increase of tasks. However, our method
API adaptively improves the model’s plasticity. Therefore,
AGRR and average gradient norm are larger than GPM dur-
ing the whole learning process.

0 6 12 18
Number of Tasks

1.0

1.5

2.0

2.5

3.0

Av
er
ag
e
G
ra
di
en
tN

or
m

(a) Variation of Gradient Norm

API GPM

0 6 12 18
Number of Tasks

0.2

0.4

0.6

0.8

1.0

A
G
R
R

(b) Variation of AGRR

API GPM

Figure 4. (a) Variation of average gradient norm on Split CI-
FAR100. (b) Variation of AGRR on Split CIFAR100.

3.6. More Plasticity Evaluation Results

In Section 3.2 of the paper, we present the relation-
ship between the model’s performance and AGRR when the
model is trained on task 2 of Split-CIFAR100 with Dual-
GPM (non-expandable parameters). Here, we give the de-
tails and more results of this experiment.

All experimental settings are the same as that in Sec-
tion 4 of the paper, except that ϵlth (see (6) and (8) of the pa-
per) is adjusted to 6 different values, including 0.97, 0.975,
0.98, 0.985, 0.99, 0.995. For each value of ϵlth, we perform
experiments three times. Therefore, there are 18 points in
Figure 3 of the paper. Average gradient norm denotes the
average of the norm of the gradient used for updating pa-
rameters during the learning of a task. Specifically, we use
1
S

∑S
i=1 ||ĝi||2 to denote the average gradient norm, where

S denotes the update times. Obviously, the larger the aver-
age gradient norm is, the larger the model updates the pa-

Table 5. The performance for different algorithm-based methods on Split CIFAR100 dataset and Split Mini-Imagenet.

SPLIT CIFAR100 SPLIT MINI-IMAGENET

METHODS ACC (%) AVG-MEMORY (M) ACC (%) AVG-MEMORY (M)

RGO 81.4 ± 0.2 6.3 58.3 ± 2.5 9.0
GPM 78.9 ± 0.2 2.9 61.2 ± 0.6 5.7
DUALGPM 78.5 ± 0.4 1.7 61.2 ± 0.6 2.6
API 81.4 ± 0.4 2.1 65.9 ± 0.6 3.3

0.34 0.36 0.38 0.40 0.42 0.44
AGRR

1.90

1.95

2.00

2.05

2.10

2.15

Av
er
ag
e
G
ra
di
en
tN

or
m

(a) task3

0.34 0.36 0.38 0.40 0.42 0.44
AGRR

0.71

0.72

0.73

0.74

0.75

0.76

0.77

A
cc
ur
ac
y

(b) task3

0.275 0.300 0.325 0.350 0.375
AGRR

1.3

1.4

1.5

1.6

1.7

Av
er
ag
e
G
ra
di
en
tN

or
m

(c) task8

0.275 0.300 0.325 0.350 0.375
AGRR

0.72

0.74

0.76

A
cc
ur
ac
y

(d) task8

0.100 0.125 0.150 0.175 0.200
AGRR

0.5

0.6

0.7

0.8

0.9

1.0

Av
er
ag

e
G
ra
di
en

tN
or
m

(e) task18

0.100 0.125 0.150 0.175 0.200
AGRR

0.70

0.71

0.72

0.73

0.74

0.75

0.76

A
cc
ur
ac
y

(f) task18

Figure 5. DualGPM with non-expandable parameters learns
on Split CIFAR100. (a), (c) and (e) show the correlation be-
tween AGRR and average gradient norm for learning different
tasks. (b), (c) and (d) show the correlation between AGRR and
the accuracy of different tasks.

rameters.
In Figure 5, we give the results on more tasks. Specifi-

cally, when the constraint increases (AGRR decreases), the
model becomes more conservative in updating parameters,
and the accuracy of the model shows a downward trend.

References
[1] Danruo Deng, Guangyong Chen, Jianye Hao, Qiong Wang,

and Pheng-Ann Heng. Flattening sharpness for dynamic gra-

dient projection memory benefits continual learning. arXiv
preprint arXiv:2110.04593, 2021. 4

[2] Hao Liu and Huaping Liu. Continual learning with recursive
gradient optimization. In International Conference on Learn-
ing Representations, 2022. 5

[3] Gobinda Saha, Isha Garg, and Kaushik Roy. Gradient projec-
tion memory for continual learning. In International Confer-
ence on Learning Representations, 2021. 1, 2, 3

[4] Joan Serra, Didac Suris, Marius Miron, and Alexandros Karat-
zoglou. Overcoming catastrophic forgetting with hard atten-
tion to the task. In International Conference on Machine
Learning, pages 4548–4557, 2018. 3

[5] Pravendra Singh, Pratik Mazumder, Piyush Rai, and Vinay P.
Namboodiri. Rectification-based knowledge retention for
continual learning. In IEEE Conference on Computer Vision
and Pattern Recognition, pages 15282–15291, 2021. 5

[6] Pravendra Singh, Vinay Kumar Verma, Pratik Mazumder,
Lawrence Carin, and Piyush Rai. Calibrating cnns for life-
long learning. Advances in Neural Information Processing
Systems, 33:15579–15590, 2020. 5

[7] Jaehong Yoon, Saehoon Kim, Eunho Yang, and Sung Ju
Hwang. Scalable and order-robust continual learning with ad-
ditive parameter decomposition. In International Conference
on Learning Representations, 2020. 2

[8] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin
Recht, and Oriol Vinyals. Understanding deep learning (still)
requires rethinking generalization. Communications of the
ACM, pages 107–115, 2021. 1

