
Supplementary File for “Being Comes from Not-being:
Open-vocabulary Text-to-Motion Generation with Wordless Training”

1. Model Structure and Training Details
Our OOHMG consists of two generators, i.e., the text-

to-pose and motion generators. To optimize the text-to-
pose generator, we also distill a text-pose alignment model,
namely TPA, from the versatile CLIP [10]. To this end,
these three neural networks contribute to our OOHMG in
this paper. In this part, we describe the format of input and
output as well as the architecture for these networks.

Fundamental neural network architectures. There are
mainly two kinds of neural network architectures used in
this paper, i.e., ResNet-based networks and Transformer-
based networks. For ResNet-based networks, input poses
are projected into embeddings by a linear layer, and then
processed by 6 residual blocks. The intermediate results are
normalized by a layer normalization layer and another lin-
ear layer to obtain the final results. The residual block will
first normalize the input by a layer normalization, and then
forward the normalized embeddings to a Linear-GELU-
Dropout(0.1)-Linear-Dropout(0.1) networks to predict the
residual which will be added to the normalized embeddings
to form the output of the residual block. The hidden size
is 1024. As for Transformer-based networks, we adopt
a similar architecture as Bert [1]. The architectures of the
transformer encoder and decoder layer are implemented by
PyTorch [5]. The poses of a motion are first projected by
a linear projection layer, then processed by an 8-layered
transformer encoder/decoder, and finally fed to an estima-
tion layer to obtain a prediction. The number of attention
heads is 8, the hidden size is 1024 and the dropout rate is
0.1.

TPA. TPA is distilled from CLIP for aligning 3D poses
and texts. Specifically, for the text encoder, TPA sim-
ply reuses the text encoder of CLIP. As for the pose en-
coder, TPA adopts the ResNet-based network. TPA pose
encoder takes in the 6D-rotation representation of the pose
and predicts the output of the original pipeline. The batch
size is 1024, and the learning rate is 1e-4 at the beginning
and annealed by the CosineAnnealingLR scheduler imple-
mented by PyTorch. The number of training iterations is
1e6. The training curves of loss in learning rates are plot-
ted at the left of Fig. 1. As for the process of the origi-
nal pipeline, we mostly adopt the process used in Avatar-

Table 1. Ablation results for our text-to-pose generator with dif-
ferent λL2 evaluated on BABEL [9].

CLIP Score ↑ In-distrib. ↓ Top50 ↑
λL2 = 0 0.2711 0.0111 0.7224

λL2 = 0.05 0.2702 0.0019 0.7039
λL2 = 0.1 0.2694 0.0015 0.6711
λL2 = 0.15 0.2689 0.0012 0.6446

CLIP [2]. Specifically, as shown in our manuscript, the 3D
pose representation is first used to generate the 3D meshes
by SMPL [6, 8]. Then, 5 look-at cameras, with azimuth
angles [120, 150, 180, 210, 240] and fixed elevation, render
the mesh into 5 images. After that, the image encoder of
CLIP extracts the features of images and the pipeline takes
the average for the features as the features of the 3D pose.
The training poses are sampled from AMASS [3].

Text-to-pose generator. The architecture of our text-to-
pose generator is the ResNet-based network. It takes the
text features extracted by TPA/CLIP text encoder and pre-
dicts the latent pose of the VPoser which is decoded by the
VPoser decoder to obtain the 6D-rotation pose representa-
tion. During training, the 6D-rotation representation is fed
to the TPA pose encoder for the pose feature. The batch
size is 1024, and the learning rate is 1e-3 at the beginning
and annealed by the CosineAnnealingLR scheduler imple-
mented by PyTorch. The number of training epochs is 1K
and the number of iterations of each epoch is 1K. As for
selection for λL2, we found that when λL2 equals 0.1, the
performances of different metrics are more in balance as
shown in Tab. 1. The loss curves with different λL2 are
plotted in the right of Fig. 1. As for noise features, the noise
features are randomly sampled either from Normal distri-
bution N (0; 1) or from Uniform distribution U [−1, 1]. The
proportions of the features from these two distributions are
50% and 50%. In addition, a random bias sampled from
U [−1, 1] is added to each of the noise features.

Pretrained motion generator. As described in the main
text, our text-to-motion generation uses the combination
of a pretrained motion model and pose prompt. And the
pretrained motion model is the only network in this stage.

Figure 1. Training curves of our TPA and text-to-pose generator. The left figure includes the loss curves of TPA with different learning
rates. The right figure includes the LTPA curves of the text-to-pose generator with different training loss functions.

Figure 2. Training curves of our motion generator and general motion VAE which is used for evaluation. The left figure ablates the λKL of
our motion generator; The right figure ablates the λKL of the motion VAE which is used for evaluation.

The pretrained motion model uses the transformer-based
network architecture. As described in our manuscript, the
pretrained motion model includes a motion encoder and a
motion generator. During the training phase, the motion
encoder takes in a motion with 6D-rotation representations
and two tokens for mean and standard deviation. The pre-
dicted mean and standard of the encoder are used to sam-
ple latent code via the reparameterization trick. The motion
generator takes the latent code and randomly masks motion
as input to reconstruct the complete motion. The batch size
is 64, and the learning rate is 1e-4 at the beginning and an-
nealed by the CosineAnnealingLR scheduler implemented
by PyTorch. The number of training epochs is 5K. λKL is
set as 1e-4 empirically. The reconstruction loss for differ-
ent λKL is shown at the left of Fig. 2. During inference, the
values of the latent code are set as 0.

2. Experiment Details

2.1. Baselines Details.

The results of all baseline methods are obtained by run-
ning their open-released codes. As for MotionCLIP [11],
we directly adopt their open-released model for motion
generation. As for Interpolation / Matching / Optimize /
VPoserOptimize / AvatarCLIP [2], we adopt and use their
open-released code and make small revisions for evalua-
tions. Particularly, Interpolation and AvatarCLIP are origi-
nally developed for generating motion using Top5 poses of
a text. Therefore, these methods are designed to use a fixed
number of condition poses with similar semantics. In our
experiments, to evaluate the controllability, the semantics
and number of condition poses are different. Thus, we adapt
the original code to evaluate the controllability. In the other
experiment we simply their original code for evaluation.

Figure 3. The visual results of different combinations of wordless training and real-world text supervision.

Table 2. CLIP scores of our text-to-pose generator trained with
maximizing TPA score or LTPA using the checkpoints of TPA at
iteration 1e4, 1e5 and 1e6.

Iterations 1e4 1e5 1e6
Text+Score 0.2491 0.2524 0.2620
Text+LTPA 0.2557 0.2613 0.2601

Table 3. Comprehensive results with/without adding an initial
pose to the prompt. The arrow ↑ indicates the performance is bet-
ter if the value is higher.

In-distrib.↓ Top1↑ Top10↑ Top50↑
Ours wo init. pose 0.0208 0.0768 0.3135 0.6154

Ours 0.0205 0.0792 0.3231 0.6494

2.2. OOHMG Prompt Details

Given a text, our text-to-pose generator synthesizes the
text-consistent pose and places it in the middle of a se-
quence of masks to form the prompt. However, we found
that in this manner, the motion generator usually generates
a motion filled with similar poses. This is reasonable since
the motion filled with similar poses might also exist in the
real world. Thanks to the strong controllability of the mo-
tion generator, we can easily adjust the generated motion by
refining the prompts with multiple poses. For example, we
can use descriptions to specify the fore-pose, middle pose,
and post-pose to construct a motion prompt. In our exper-
iments, we found that adding an initial pose (which latent
poses of VPoser is a zero vector) to the prompt can sig-
nificantly improve the variation of the generated motions.
And we also found that in this manner, the performance of
motion evaluation also improve a little bit, as presented in

Figure 4. The visualization of poses generated with random text
features.

Tab. 3.

2.3. Wordless Training Visualization

The poses in Fig. 3 are generated w.o. / w.
wordless training, corresponding to “Ours(Text+LTPA) /
Ours(Random+LTPA)” in Tab.4 of the main paper. We ob-
serve that, without wordless training, the generator may not
perform well with some unseen texts (in boxes).

2.4. Visualization for poses generated with random
text features

In Fig. 4, we show several poses generated by our text-
to-pose generator using random features obeying Equ.(5)
in the main paper. The results imply that our method can
generalize to random texts.

2.5. Contrastive Loss and Maximizing Score

As we can see in Tab. 2, when TPA is finished training at
iter 1e6, by maximizing the TPA score (i.e., Text+Score)
can also obtain comparable performance to Text+LTPA
which uses LTPA for optimization. However, if TPA is not
converged, Text+Score is more likely to have a degenerated
performance. While Text++LTPA has more stable perfor-
mance. We contribute such stability to more dense supervi-
sion by drawing other samples into the contrastive loss.

2.6. Evaluation Metrics.

In our experiments, we mainly evaluate text-to-pose and
text-to-motion generations. Unfortunately, there are no suit-
able evaluation metrics in the current literature. In Avatar-
CLIP [2], they only conduct user studies. Therefore, our
paper proposes to adopt and adapt popular metrics to evalu-
ate performance.

As for text-to-pose generation, we mainly evaluate the
CLIP similarity score (i.e., CLIP Score), in-distribution
distance (i.e., In-distrib.), text-to-pose-to-text reconstruc-
tion loss (i.e. Cycle loss) and CLIP-R-precision [4] (i.e.,
TopK). Specifically, In-distrib. is the reconstruction loss
of the VPoser [6]. If the generated pose is similar to the
training poses of VPoser, the reconstruction is likely to be
small. And for Cyc. Loss, we train an auxiliary neural net-
work for each method to learn the reverse mapping from the
generated poses to their corresponding text features. And if
the regression loss is smaller, the generated poses are more
likely to carry more textual information and thus more di-
verse. The structure of the auxiliary regression model is
similar to the pose encoder of TPA. The hidden size is 512
and the number of ResBlock is 2, and no dropout. The
learning rate is 1e-3 and the number of iterations is 1e4.

As for text-to-motion generation, we mainly evaluate the
in-distribution degree (i.e., In-distrib.) and the extended
CLIP-R-precision for motion (i.e., TopK). Specifically, In-
distrib. also uses reconstruction loss of a pretrained motion
VAE. The pretrained motion VAE is similar to the archi-
tecture of ACTOR [7] without condition input. The KL
loss term is 1e-4 as ablated in the right of Fig. 2. As for
the extended CLIP-R-precision, we say that the text-motion
matching is accurate if, among all poses of the generated
motion from different texts, the best-matched pose of the
text is located in the generated motion of the text. To
achieve a better motion-level CLIP-R-precision, the gener-
ated motion should 1) contain the text-consistent poses, and
2) and does not contain irrelevant poses that might cause
mismatching for other poses.

To measure whether the motion generator can synthe-
size motion according to the given poses, we also intro-
duce the KP metric. We randomly sample poses from 4096
clustered poses from AMASS and use them as conditional
poses. And we measure whether the generated motion con-
tains that pose by calculating the minimal reconstruction er-
ror of these poses. The small the reconstruction error is, the
better the generated motion preserves the conditional poses.
We use the 4096 clustered poses used in AvatarCLIP [2] as
the condition poses. We randomly sample from the clus-
tered poses to construct the KP test set, where K ∈ {1, 2, 3}
indicates the number of the condition poses used for gen-
eration a motion. The measurement of KP for a generated
motion m conditioned on poses {p′k}j=1:K is formulated

as:

KP(m, {p′k}j=1:K) =
1

K

∑
k=1:K

min
pj∈m

||p′k − pj ||2. (1)

2.7. Human Evaluation

For human evaluation, we designed our human
evaluation questionnaires in the free online platform
(https://wj.qq.com/). We shared the questionnaires on the
internet with the non-paid and unknown subjects who are
not participated in our work, including but not limited to
colleagues from different universities, workers from differ-
ent industrial companies, etc. For each question in the ques-
tionnaire, a subject will be provided with a text descrip-
tion and several shuffled generation contents from different
methods, following two queries in terms of text consistency
and realness. We randomly invite 25 human evaluators to
compare the performance of pose generation and motion
generation of different methods. For each participant, we
inquire about 50 questions (25 for pose and 25 for motion).
A text and the generated poses/motions of different meth-
ods are given for each question. The participants are re-
quired to give the order of methods in terms of realness
and text consistency. For realness, we ask the participant
which pose/motion is more vivid as real-world pose/motion.
And for text consistency, we ask them which pose/motion
is more in line with the given text. To avoid the partic-
ipant trivially giving the meaningless order, we randomly
change the order of the presentation order of different meth-
ods. There are three pose generation methods and four mo-
tion generation methods. For the pose generation method
with ranks 1st, 2nd, and 3rd, we assign scores 3, 2 ad 1 for
each question. Similarly, for the motion generation method
with ranks 1st, 2nd, 3rd, and 4th, we assign scores 4, 3, 2
ad 1 for each question. To better understand the content of
the human evaluation, we also include the visualization of
poses and motions of different methods, which are placed
in a separate folder along with the supplementary.

2.8. Discussion and Limitations

As foundation models, e.g., CLIP, become more ma-
ture and learn more real-world knowledge, it provides us
with new opportunities and challenges to a new learning
paradigm. In this paper, we show one of the possibilities
that learning from the foundation model instead of learn-
ing from data. We believe such attempts have an advantage
over learning from data since the foundation model can bet-
ter associate multi-modality data to make better decisions.
Particularly, in our method, we found that using noisy train-
ing data can probe diverse knowledge out of the foundation
model, which implies the feasibility of building an agent
that can actively and continuously learn knowledge from

the foundation model starting from chaos, i.e., noises, with-
out manually feeding data which might limit the learnable
knowledge of the foundation model. By this means, the
agent might be able to learn something that is existed but
we have not thought of yet or tasks we cannot formulate
mathematically using our current knowledge.

Although our method is mainly offline generation, our
method can also be extended to online generation. In ad-
dition to pure online generation, ours may provide a better
initial solution to speed up the optimization and improve
robustness.

However, as one of the few pioneers, several aspects
can be improved in our work. One is that CLIP learns
from static image data and cannot handle motion descrip-
tion. It cannot handle some difficult texts like a sentence
having multiple successive motions. However, this can be
addressed by a divide-and-conquer strategy. And with the
great controllability of our method, our methods can be eas-
ily extended to handle this problem. And our work mainly
evaluates the existing methods using CLIP-based measure-
ments, e.g., CLIP-R-precision, since the compared meth-
ods are mostly CLIP-based. Nevertheless, there are sev-
eral foundation models for aligning video and texts, but we
found that most of them are learning with limited types of
video data and are not as general as CLIP due to the diffi-
culty of data collection for video training data. To this end,
in our paper, we still prefer CLIP for zero-shot learning.
And we leave the research with other foundation models in
the future.

References
[1] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina

Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint
arXiv:1810.04805, 2018. 1

[2] Fangzhou Hong, Mingyuan Zhang, Liang Pan, Zhongang
Cai, Lei Yang, and Ziwei Liu. Avatarclip: Zero-shot text-
driven generation and animation of 3d avatars. arXiv preprint
arXiv:2205.08535, 2022. 1, 2, 4

[3] Naureen Mahmood, Nima Ghorbani, Nikolaus F. Troje, Ger-
ard Pons-Moll, and Michael J. Black. Amass: Archive of
motion capture as surface shapes. international conference
on computer vision, 2019. 1

[4] Dong Huk Park, Samaneh Azadi, Xihui Liu, Trevor Dar-
rell, and Anna Rohrbach. Benchmark for compositional text-
to-image synthesis. neural information processing systems,
2021. 4

[5] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zem-
ing Lin, Natalia Gimelshein, Luca Antiga, Alban Desmai-
son, Andreas Kopf, Edward Z. Yang, Zachary DeVito, Mar-
tin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch:
An imperative style, high-performance deep learning library.
neural information processing systems, 2019. 1

[6] Georgios Pavlakos, Vasileios Choutas, Nima Ghorbani,
Timo Bolkart, Ahmed A. A. Osman, Dimitrios Tzionas, and
Michael J. Black. Expressive body capture: 3d hands, face,
and body from a single image. In Proceedings IEEE Conf.
on Computer Vision and Pattern Recognition (CVPR), 2019.
1, 4

[7] Mathis Petrovich, Michael J. Black, and Gül Varol. Action-
conditioned 3d human motion synthesis with transformer
vae. international conference on computer vision, 2021. 4

[8] Leonid Pishchulin, Stefanie Wuhrer, Thomas Helten, Chris-
tian Theobalt, and Bernt Schiele. Building statistical shape
spaces for 3d human modeling. Pattern Recognition, 2017.
1

[9] Abhinanda R. Punnakkal, Arjun Chandrasekaran, Nikos
Athanasiou, Alejandra Quiros-Ramirez, and Michael J.
Black. Babel: Bodies, action and behavior with english la-
bels. computer vision and pattern recognition, 2021. 1

[10] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen
Krueger, and Ilya Sutskever. Learning transferable visual
models from natural language supervision. international
conference on machine learning, 2021. 1

[11] Guy Tevet, Brian Gordon, Amir Hertz, Amit H Bermano,
and Daniel Cohen-Or. Motionclip: Exposing human motion
generation to clip space. arXiv preprint arXiv:2203.08063,
2022. 2

	. Model Structure and Training Details
	. Experiment Details
	. Baselines Details.
	. OOHMG Prompt Details
	. Wordless Training Visualization
	. Visualization for poses generated with random text features
	. Contrastive Loss and Maximizing Score
	. Evaluation Metrics.
	. Human Evaluation
	. Discussion and Limitations

