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Table 1. Performance of supervised baselines on COCO-Standard.

Methods COCO-Standard
1% 2% 5% 10%

FCOS 9.05 14.40 20.69 26.01
±0.31 ±0.28 ±0.22 ±0.15

RetinaNet 9.40 14.13 20.12 26.14
±0.35 ±0.33 ±0.16 ±0.08

1. More Implementation Details

1.1. Supervised baselines

In this section, we detail both anchor-free (FCOS [8])
and anchor-based (RetinaNet [4]) supervised baselines of
the proposed ARSL. Both baselines employ ResNet-50 [2]
as the backbone and use FPN [3] as the neck. In inference,
a score threshold (0.05) is used to filter backgrounds and
retain top-1000 detection results per feature pyramid. The
Non-Maximum Suppression (NMS) is then employed with
the IoU thresh 0.6 per class to obtain final results. Their
supervised performance on the COCO-Standard setting are
given in Tab. 1.
FCOS Implementations. For FCOS, following other
SSOD methods [1, 6], we adopt the original implementa-
tion [8] as the baseline.
RetinaNet Implementations. RetinaNet is not employed
in most SSOD methods, since its original performance is
slightly lower than FCOS due to the lack of various tricks.
To obtain comparable performance, we simply add tricks
of FCOS to RetinaNet, e.g., adding GN [9] in heads, using
GIoU [7] loss for the localization task, and setting one an-
chor per location. Moreover, the IoU-based assignment is
replaced with the ATSS [10] assignment. With these modi-
fications, RetinaNet achieves competitive performance with
FCOS, as shown in Tab. 1.

∗Co-first author (Equal Contribution).
†Corresponding author.

This work was done when Chang Liu was an intern at Baidu Inc.

Figure 1. The AP curves of the basic SSOD framework and pro-
posed ARSL on 10% split of the COCO-Standard setting.

1.2. Data Augmentation

For data augmentation, we follow the basic augmenta-
tion setting in Unbiased Teacher [5] without whistles and
bells. The weak augmentations contain multi-scale training
and random horizontal flip. The strong augmentations ad-
ditionally include color jittering, grayscale, Gaussian blur,
and cutout. The details are given in Tab. 2.

1.3. Training Hyper-parameters

The hyper-parameters of the training process are sum-
marized in Tab. 3..

2. More Experiments on COCO-Standard
In this section, we present more experiments on the 10%

split of the COCO-standard setting. The results are obtained
on the COCO val set.
Positive Threshold of TSA. The influence of the positive
threshold τpos in TSA is analyzed in Tab. 4. Substantially, a
higher τpos guarantees the quality of positives and ignores
more candidate samples. Under the fixed-value scheme, the
best accuracy of 35.4% AP is obtained when τpos is set to
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Table 2. Details of weak and strong data augmentations. ’Prob represents the probability to apply the corresponding augmentation.

Augmentation Weak Augmentation Strong Augmentation Descriptions

Random Resize short edge ∈ (640, 800) short edge ∈ (640, 800)
The short edge of image is random resized
from 640 to 800.

Horizontal Flip Prob = 0.5 Prob = 0.5 Flip an image horizontally.

Color Jittering - Prob = 0.8

Including brightness, contrast, saturation, and hue.
Brightness factor, contrast factor, and saturation factor
is uniformly chosen from (0.6, 1.4).
Hue factor is uniformly chosen from (0.9, 1.1).

Grayscale - Prob = 0.2 Convert an RGB image to grayscale.
Gaussian Blur - Prob = 0.5 Gaussian filter with σx = 0.1 and σy = 2.0 is applied.

Cutout (first) - Prob = 0.7
Randomly erase the rectangle region with the scale
of (0.05, 0.2) and ratio of (0.3, 3.3).

Cutout (second) - Prob = 0.5
Randomly erase the rectangle region with the scale
of (0.02, 0.2) and ratio of (0.1, 6.0).

Cutout (third) - Prob = 0.3
Randomly erase the rectangle region with the scale
of (0.02, 0.2) and ratio of (0.05, 8.0).

Table 3. Training hyper-parameters on MS COCO and PASCAL
VOC.

Hyper-parameter COCO Standard COCO Full& VOC
EMA rate 0.9996 0.9996
Unsupervised loss weight 2.0 2.0
Batch size for labeled data 32 32
Batch size for unlabeled data 32 32
Learning rate 0.02 0.02
Training iterations 90K 360K

0.4 and 0.5. With the adaptive τpos, the accuracy is im-
proved to 35.6% AP. This substantiates that dynamically
calculating τpos based on the statistics of samples, achieves
a better trade-off between the quality and quantity of posi-
tives, and therefore bolsters the performance.
Unsupervised Loss Weight. We also investigate the effect
of unsupervised loss weight β. As shown in Tab. 5, the
SSOD performance is insensitive to β in a relatively large
range (from 1.5 to 2.5). The best performance is obtained
when β is set to 2.0.
AP Curves. We compare the detailed AP curves on the
whole training process between the proposed ARSL and the
basic SSOD framework. As shown in Fig. 1, under the ba-
sic SSOD framework, the performance tends to decline after
about 60K iterations. We conjecture that the model is sup-
pressed by the selection and assignment ambiguities. On
the contrary, the proposed ARSL gets continuous improve-
ments from the whole training process.

3. Qualitative Results

Fig. 2 exhibits the qualitative comparison of detection
results in common and dense-object scenes between the ba-

Table 4. Investigation on the positive threshold τpos of task-
separation assignment without classification and localization min-
ing. ’Adaptive’ represents the thresh is dynamically calculated
based on the statistics.

Value of τpos 0.2 0.3 0.4 0.5 Adaptive
AP 34.8 35.2 35.4 35.4 35.6

Table 5. Investigation on unsupervised loss weight β.

Value of β 1.0 1.5 2.0 2.5 3.0
AP 36.1 36.8 36.9 36.5 35.9

sic SSOD framework and the proposed ARSL. Both detec-
tors are trained on the 10% split of COCO-Standard. Com-
pared with the basic SSOD framework, ARSL generates a
large amount of detection results with higher quality. Con-
sequently, it establishes a better foundation for pseudo la-
bels and bolsters the SSOD performance.

4. Limitations and Future Works
In this paper, we propose ARSL to tackle the ambigu-

ity of pseudo labels. Concretely, JCE effectively mitigates
the selection ambiguity by jointly quantifying the quality of
classification and localization. TSA alleviates the assign-
ment ambiguity by separately exploiting positives for the
two tasks. Although ARSL has shown remarkable improve-
ments on both anchor-based and anchor-free one-stage de-
tectors, it remains challenging to further improve the qual-
ity of pseudo labels. There also exist other problems in
SSOD, such as class imbalance between labeled and unla-
beled data, domain shift among datasets. These topics are
the core problems to improve SSOD performance and gen-
erality, and worth exploring in future research.



Figure 2. Qualitative comparison on 10% split of COCO-Standard. (a) ARSL and (b) Basic SSOD Framework.
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