Appendix
This appendix is organized as follows.

* In Section A, we present more results on ImageNet
(Sec. A.1) and ELEVATER (Sec. A.2), with additional
studies on a broader selection of checkpoints and more
visualizations for a better understanding of our ap-
proach.

e In Section B, we further present more analysis and
discussion for a more comprehensive analysis and un-
derstanding of our approach.

e In Section C, we provide implementation details
(Sec. C.1,C.2) and cost analysis (Sec. C.3) of our re-
trieval system and model customization pipelines.

A. More Results on Image-level Tasks
A.1. ImageNet

Comparison of a broader selection of checkpoints. To
further study the improvement of REACT over the pretrained
vision-language models, we present more results with dif-
ferent pretraining data (WIT-400M, LAION-400M, LAION-
2B) and different vision Transformer model sizes (B/32,
B/16, L/14). For a fair study, we use the same set of 10M
retrieved image-text pairs from LAION-400M dataset for
all configurations. Results are presented in Table 1 (first
column).

From the table, we can see that REACT with both tuning
strategies consistently improves over the base checkpoints
across different pretrained data and different vision back-
bones, and locked-text-gated-image tuning consistently per-
forms better than the locked-text tuning only. Though both
benefiting from REACT customization, CLIP checkpoints
that are trained on WIT-400M data benefit slightly more than
OpenCLIP checkpoints. This suggests that during the model
customization stage, leveraging unseen data can potentially
give the model a larger gain compared with the seen data
during pretraining.

We further study the case when all retrieval data is al-
ready observed by models during their pretraining stage.
Specifically, we study OpenCLIP checkpoints pretrained
on LAION-400M [22], and LAION-2B [21] (a super-set of
LAION-400M). From the results, we see that by revisiting
the already observed LAION-400M data, REACT (locked-
text) shows +2.8/43.0 improvements on B32/B16 check-
points, respectively, which purely comes from the model
customization stage, with neither additional model param-
eters, nor additional training data. Interestingly, even on
OpenCLIP checkpoints that is pretrained with a much larger
LAION-2B, REACT can still improves over OpenCLIP by
+0.9/+2.9 with B32 backbone with locked-text and locked-
text-gated-image tuning strategy, respectively. These find-

ings suggest that leveraging the original pretraining dataset
only at the pre-training stage is sub-optimal, it is of much
larger potential to explore the web-scale data using the pro-
posed model customization stage.

Robustness. We also conduct zero-shot evaluation on other
ImageNet variants: ImageNet-V2 [15], ImageNet-R [9],
ImageNet-A [10], ImageNet-Sketch [25] in Table 1. With the
REACT customization, model robustness towards different
ImageNet variants consistently improves on ImageNet-V2,
ImageNet-R, and ImageNet-Sketch. We notice that for some
checkpoints, the accuracy drops after model customization
on ImageNet-R dataset: an adversarial dataset with a collec-
tion of selected images from the web that can “fool” common
classifiers. We find that classifiers trained on the LAION
dataset are more prone to such adversarial attacks, while RE-
ACT customization helps it recover from such attacks to some
extent: accuracy improves for OpenCLIP checkpoints that
are trained on LAION, especially when locked-text gated-
image strategy is used.

Linear Probe. We further study the full-shot performance
on ImageNet- 1K of REACT using the linear probing proto-
col. ImageNet-1K contains around 1.28M training images,
and it represents one of the most standard data-rich settings.
We use the DINO [5] code base for the linear probe exper-
iments. As shown in Table 2, REACT improves over CLIP
by +0.6/+1.9 with the locked-text and locked-text-gated-
image tuning, respectively. This suggests that the REACT
customization adequately adapts the visual encoder to the
ImageNet domain, resulting in better feature representations.

Low-Shot Adaptation. We extend the scope of ImageNet-
1K experiments to low-shot settings: 1% and 10% labelled
data settings, and provide the first strong baselines using
CLIP checkpoints. We present results in Table 3. First, we
find that when the linear head is randomly initialized, it
often results in sub-optimal low-shot performance, as the
knowledge from the CLIP’s language encoder is completely
discarded. We advocate using language-augmented initial-
ization of the linear head [16], which improves the 1% label
adaptation performance of CLIP ViT-B/16 from 70.9% to
74.3% (+3.4%). With REACT customization stage, it further
improves by 3.1% to 77.4%, outperforming prior arts with
similar model sizes. Furthermore, when we further scale up
the model size to ViT-L/14, CLIP achieves 80.5% accuracy,
which is on par with the previous SoOTA. REACT further im-
proves the accuracy by 1.1%, setting a new state-of-the-art
of 81.6% accuracy on 1% label settings. Similar trend is
observed in 10% label setting: CLIP is on-par with the prior
art, and our REACT customization pushes the new SoTA
towards 85.1% accuracy.

Sample Overlap. There is a chance that the LAION-400M
dataset contains some of downstream ImageNet images, and
our retrieval system may retrieve these image-text pairs. One



fo ‘ Pretrain Data Method ‘ ImageNet ImageNet-V2  ImageNet-R  ImageNet-A  IN-Sketch

CLIP 63.2 55.9 69.3 314 423

WIT-400M REACT (Locked-Text) 66.9 58.6 77.9 23.0 54.2

REACT (Locked-Text Gated-Image) | 68.6 61.0 78.2 30.8 53.9

OpenCLIP 62.9 55.2 73.4 21.8 49.4

B/32 | LAION-400M | REACT (Locked-Text) 65.7 57.3 77.5 20.2 54.8
REACT (Locked-Text Gated-Image) | 66.4 58.7 77.8 22.7 54.8

OpenCLIP 66.6 58.2 76.5 26.2 53.5

LAION-2B REACT (Locked-Text) 67.5 59.5 79.1 23.8 571

REACT (Locked-Text Gated-Image) | 69.5 61.6 80.2 27.9 58.4

CLIP 68.6 61.8 77.6 49.7 48.3

WIT-400M REACT (Locked-Text) 71.6 64.4 83.4 38.8 58.3

BII6 REACT (Locked-Text Gated-Image) | 73.4 66.8 84.0 48.5 58.3
OpenCLIP 67.1 59.4 779 33.0 524

LAION-400M | REACT (Locked-Text) 69.9 62.4 81.8 33.7 58.1
REACT (Locked-Text Gated-Image) | 70.5 63.0 82.3 37.8 57.4

CLIP 75.3 69.6 87.8 70.5 59.6

L4 WIT-400M REACT (Locked-Text Gated-Image) | 78.1 71.5 89.9 68.6 64.8
OpenCLIP 75.3 67.9 84.1 42.0 63.3

LAION-2B REACT (Locked-Text Gated-Image) | 76.4 68.9 89.0 55.2 65.4

Table 1. Comparison with public checkpoints from CLIP [20] and OpenCLIP [12]. All REACT checkpoints use 10M retrieved samples from

LAION-400M [

Method ‘ Accuracy
CLIP [20] | 802
CLIP 79.5
REACT (Locked-Text) 80.1
REACT (Locked-Text Gated-Image) | 81.4

Table 2. Linear Probe on ImageNet-1K. CLIP': reproduced by our
implementation.

may question that if the performance gain of REACT model
customization actually comes from these samples.

We carefully study the de-duplication experiments. We
compute the pairwise distance of the visual features between
the images from the retrieved set and the ImageNet train/val
set, and set the cutoff threshold to 0.95 (Fig. 1, Bottom).
Note that 0.95 is a high threshold, as ~85K (~1% of 10M
total retrieved images) images are removed, among which,
only a few of them overlap with ImageNet train/val. This
suggests that the LAION data contain ImageNet images,
making the publicly available OpenCLIP checkpoints less
rigorous when reporting the zero-shot task transfer perfor-
mance. As for CLIP, as its pre-training data is not publicly
available, it remains unknown if any ImageNet images are
observed in its pre-training. We set it to 0.95 mainly to
ensure that the overlapping images are removed from the
retrieved sets so as to carefully study its effect.

As shown in Table 4, even after aggressively removing
85K images, the final model’s performance is similar (-0.2%)
to the checkpoint trained on the unfiltered retrieved set. We

] dataset during model customization stage. It consistently outperforms base CLIP and OpenCLIP checkpoints.

Method Backbone  # Params ‘ 1% 10%
Self-supervised or semi-supervised methods

iBOT [30] ViT-B/16  86M 69.7 -
DINO [3] ViT-B/8 86M 70.0 -
MSN [2] VITB/4  86M 757 -
MSN [2] ViT-L/7 304M 75.1 -
PAWS [3] RN50x4 375M 69.9 79.0
SimCLRV2 [6] RN152x3  795M 749  80.1
SimCLRv?2 (self-distilled) [6] RN152x3  795M 76.6 809
Semi-ViT [4] ViT-H/14  632M 80.0 843
SEER [7] RegNetY 1.3B 60.5 779
Language-image learning methods

CLIP [20] (Zero-Shot) ViT-B/16  86M 68.6
CLIP (Random Init.) ViT-B/16 86M 70.9  80.1
CLIP (Language Init. [16]) ViT-B/16 86M 743  80.4
REACT (Locked-Text) ViT-B/16  86M 76.1  80.8
REACT (Locked-Text Gated-Image) ~ ViT-B/16 129M 774  81.8
CLIP [20] (Zero-Shot) ViT-L/14 304M 75.3
CLIP (Language Init. [16]) ViT-L/14 304M 80.5 847
REACT (Locked-Text) ViT-L/14 304M 81.6 85.1
REACT (Locked-Text Gated-Image)  ViT-L/14 380M 81.6 85.0

Table 3. Low-shot (1% and 10% labels) on ImageNet-1K. For
CLIP and REACT experiments, unless noted, we use language
initialization [16] by default for the optimal low-shot performance.

further visualize the validation accuracy curve as training
proceeds in Fig. 1 (Top). The model behaviors during train-
ing are very similar between filtered (dashed curve) and un-
filtered (solid curve) retrieved sets, for both tuning strategies.
This ensures that the gains are not due to the overlapping
samples, and REACT effectively learns and adapts to the
ImageNet domain during the model customization stage.

Quality Control. The quality of retrieved data matters for
vision-language pre-training. As an initial attempt of the



Accuracy

Method ‘ Filtered  Unfiltered
OpenCLIP [12] | - 62.9
REACT (Locked-Text) 66.7 66.9
REACT (Locked-Text Gated-Image) 68.4 68.6

Table 4. The study of sample overlap. Comparison between check-
points trained on filtered and unfiltered retrieved set. REACT is
customized based on CLIP ViT-B/32 checkpoint, whose ImageNet
zeroshot accuracy is 63.2.
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Figure 1. The study of sample overlap. Top: comparison of vali-
dation accuracy curve between checkpoints using filtered (dashed
line) and unfiltered (solid line) retrieval set during the model cus-
tomization stage. Both the training behavior and the final model
performance are similar. Bottom: histogram of the sample sim-
ilarity between the retrieved samples and ImageNet training set
(nbins=200). The cutoff threshold is set to 0.95 (red line).
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Figure 2. Quality control. Sample frequency under different CLIP
scores.

quality control, we consider to use the CLIP score to select
the high relevant retrieved image-text pairs. The distribution

[ Query: a photo of the Volvo 240 Sedan 1993.

Mismatch between query and retrieved image.

News Specs Buy Car

Alignment between the retrieved image-text pairs

Figure 3. Mismatch between the query (Volvo) and the retrieved
image (Audi). The retrieved caption helps to correct the mistake.

of the CLIP score is visualized at Fig. 2. We choose CLIP
score 0.3 and 0.32 as two thresholds (v): a threshold of 0.3
filters the low-quality samples while keeping the total num-
ber of retrieved samples roughly the same (93.5% retrieved
samples are kept), a threshold of 0.32 performs a more ag-
gressive filtering and keeps around 6M samples (sufficient
for REACT customization according to Sec. B.1).

As shown in Table 6, REACT is robust towards noise in the
pretraining data. When filtering using a CLIP score thresh-
old of 0.3, the model customization performance roughly
remains the same. When filtering with a threshold of 0.32,
the customization performance drops by around 1%, which
suggests that the filtered samples contain useful information
for model customization. In conclusion, our REACT model
customization is robust against the noises in the retrieval
dataset. Therefore, we leave a more sophisticated quality
control approach to future work.

A.2. ELEVATER

Breakdown results. We present the full-spectrum break-
down results for zero-shot, few-shot, and full-shot experi-
ments on the ELEVATER benchmark in Table 5. We mark
the experiment runs that REACT yields gains compared with
baseline CLIP in green and with bold font.

First, across zero-shot, few-shot, and full-shot settings,
REACT consistently improves over the baseline CLIP. How-
ever, on the ELEVATER benchmark, locked-text and locked-
text-gated-image strategy works better in different cases:
for zero-shot, locked-text-gated-image works much better
than locked-text with 1.4% improvement; while for other
cases, they perform similarly well, and locked-text is slightly
better in 3/4 cases. This may be partly due to that we are
training a unified checkpoint across different domains, and
random noises during the final adaptation stage can cause
small variations on different datasets.

Second, we find that across different data regimes and
different tuning strategies, the gains and losses are mostly
consistent on a fixed set of datasets. This provides another
clue for that the gains and losses are highly correlated with
the retrieval quality, and the gain/loss conclusion can gener-
ally transfer to different tuning configurations.

Visualizations. We present more retrieved samples from the
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Zero-Shot Adaptation
56.8 |87.5 89.9 65.1 17.2 444 456 42.1 19.6 84.0 32.8 56.0 29.0 48.1 66.5 87.1 60.7 58.4 60.0 59.7 82.6
Locked-Text 59.3 [90.7 94.0 73.7 17.1 47.6 53.4 46.8 28.1 83.0 27.2 54.8 25.2 50.6 74.0 88.3 48.1 54.5 59.7 87.3 81.0
Locked-Text Gated-Image | 60.7 [90.6 91.7 70.7 19.1 49.2 53.8 49.0 30.0 85.1 30.5 54.1 22.2 53.9 76.1 90.1 53.9 58.4 62.9 88.9 82.8
Few-Shot Linear Probe
65.3 [89.8 90.0 67.4 17.5 59.6 73.2 47.4 284 84.2 52.5 56.0 449 71.1 90.5 88.0 63.2 57.5 76.6 65.0 84.0
Locked-Text 694 (92.2 94.1 76.3 17.6 66.6 82.5 49.9 42.1 84.2 55.0 54.9 42.2 78.7 96.7 89.0 58.5 54.2 80.5 89.3 83.3
Locked-Text Gated-Image | 68.9 (92.5 92.3 71.6 18.9 66.2 74.5 51.8 44.1 85.6 51.9 54.1 429 68.7 97.0 90.6 60.5 60.7 78.8 90.0 84.4
Few-Shot Full-Model Finetune
63.3 |88.8 91.3 73.0 16.6 51.8 79.3 52.3 23.1 84.0 60.4 55.8 44.3 60.5 67.3 86.9 61.8 59.3 70.8 56.3 82.4
Locked-Text 68.8 (934 94.2 794 169 61.2 76.0 52.2 41.1 83.2 77.3 549 44.0 67.5 90.0 88.9 57.8 53.3 78.0 894 779
Locked-Text Gated-Image | 68.4 |91.3 92.2 77.2 18.1 60.1 81.2 52.6 31.8 85.4 69.4 54.1 40.0 68.3 88.8 89.7 61.0 59.9 77.2 87.0 83.3
Full-Shot Linear Probe
78.4 186.0 95.1 79.8 259 75.3 93.8 67.8 44.7 88.6 86.9 63.1 65.8 98.8 94.5 91.0 83.2 71.6 83.1 82.1 86.0
Locked-Text 80.1 |94.5 96.6 84.1 242 77.4 95.7 66.0 57.1 83.0 86.4 59.7 68.1 98.6 98.1 92.5 83.4 63.5 89.4 93.1 85.0
Locked-Text Gated-Image | 80.4 (94.5 95.6 81.6 26.3 77.8 95.3 67.2 56.5 89.2 83.3 62.6 65.3 98.4 98.2 93.6 83.3 70.4 89.7 93.5 86.0
Full-Shot Full-Model Finetune
80.3 |94.0 97.8 87.0 19.1 70.1 98.1 68.9 50.7 87.7 98.6 61.9 81.0 99.5 88.5 91.6 91.0 70.6 89.4 75.8 85.7
Locked-Text 82.2 [95.3 98.3 89.0 20.6 75.1 98.0 71.6 60.2 88.0 98.7 58.1 79.2 99.7 95.3 934 90.4 65.1 90.2 92.6 85.1
Locked-Text Gated-Image | 81.8 (94.6 98.3 87.8 19.5 72.5 97.9 70.5 59.7 88.4 98.7 58.5 73.4 99.6 94.5 93.0 89.1 70.5 89.7 93.0 86.6

Table 5. Full-spectrum breakdown results on ELEVATER using CLIP (ViT-B/32) and 10M retrieved image-text pairs from LAION-400M.

Accuracy
Method v=0.32 ~=0.30 Unfiltered
CLIP [20] | - - 63.2
REACT (Locked-Text) 65.2 67.1 66.9
REACT (Locked-Text Gated-Image) 67.3 68.1 68.6

Table 6. Quality control. Comparison between checkpoints trained
on CLIP-score-filtered and unfiltered retrieved set. REACT is cus-
tomized based on CLIP ViT-B/32 checkpoint.

ELEVATER datasets to illustrate properties of REACT.

First, we show one example of the benefit of using re-
trieved image-text pairs for training instead of using pseudo
labels. As shown in Fig. 3, the query is Volvo sedan, while
one of the retrieved sample is an Audi. The retrieved text
contains the correct brand Audi, and the alignment between
the retrieved image-text pairs can help correct the retrieval
mistake and aid the model training. If the retrieved images
are annotated as the same label with query, and used the
pseudo-labelled pairs for training, the aforementioned find-
ing suggests that the approach would perform worse than
leverage the “true” image-text pair knowledge crawled from
the web.

Second, we visualize examples retrieved by text-to-text
and text-to-image retrieval, using the same query: “a
painting of a flamingo”. Asshown in Fig. 4, text-
to-text retrieval can retrieve samples that is more accurately

[ Query: a painting of a flamingo.
ﬂ Retrieved Image-Text Pair:

J Query: a painting of a flamingo.
E Retrieved Image-Text Pair:
e

flamingos standing in
the pond on the order,
sketch vector graphics
color illustration on
white background

28278 Flamingo Paintin
e 9 9

(a) T2T: more accurate concept matching | (b) T2I: more diverse text description

Figure 4. Comparison between T2T and T2I retrieved samples.

matching the query (“a painting”). On the other hand,
text-to-image retrieval gives a more diverse text description,
while it may not have a perfect match between the query and
the retrieved text sample (“sketch vector”).

B. More Analysis and Discussions

B.1. More ablations on ImageNet

Where to add gated blocks? We conduct an experiment by
adding a single GSA block before each Transformer block
and continual pretraining the model on the retrieved image-
text pairs. We then visualize the learned gated values in
Fig. 5 (top): as the network goes deeper, the gate values
become larger, and compared with other blocks, the learned
alpha gates in the first six layers have a much smaller value.
We hypothesize that earlier blocks have a smaller modulation
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Figure 5. (Top) The learned gated values on the newly added SA
and FFN layers for two networks: adding gated blocks in all 12
layers and in the last 6 layers, respectively; (Bottom) the zero-shot
accuracy on ImageNet when adding gated blocks into different
number of last layers.

to the base network, and removing them has minimal effect
on the model’s performance. Therefore, we vary the number
of last layers which we add gated blocks to, and show empir-
ical results in Fig. 5 (bottom). With more layers added to the
base network, the model’s zero-shot performance gradually
increases, and saturates at 6 blocks. Therefore, we add gated
blocks to last 6 layers as the default to balance the accuracy
and the efficiency.

Search methods. Three search methods are compared: T2I,
T2T, and T2I/T2T-combined. We find all modes consistently
improve over the baseline CLIP. T2I retrieval alone yields
a slightly worse performance, which may be partly due to
its retrieved samples being more noisy and less relevant
than T2T retrieval. T2T alone or T2I/T2T-combined has
a similar performance. We use T2I/T2T-combined as our
default strategy.

Search Methods | - T2 T2T T2U/T2T
ImageNet-1K Accuracy \ 63.2 658 68.6 68.6

Comparison with self-training. We study and compare
with the pseudo labeling strategy on retrieval-augmented
model customization. After the relevant image-text pairs
are retrieved, we use the pretrained CLIP checkpoint to
assign pseudo labels to each retrieved image, and finetune
the model as a classification task using the retrieved samples
and pseudo labels. We optimize the network with UniCL
loss [28]. With frozen text, pseudo-labeling can improve
the model’s performance with T2I/T2T data, while having
a decreased performance with T2I data. This can be due
to that the relevance of the T2I data is lower than other
splits, and pseudo label assigned can be incorrect. Besides,
gated self-attention is complimentary to pseudo labeling

with ~2% improvements. In contrast to pseudo labeling,
training directly on the retrieved image-text pairs does not
use heuristics to create pseudo labels, and the model can
receive additional supervision signal, which we empirically
find helpful for model adaptation and robustness.

Retrieval Methods
Method Tuning Strategy T2 T2T T2UT
CLIP - 63.2
Self-training | Locked-Text 624 636 64.6
Locked-Text Gated-Image | 64.3  66.1 66.2
REACT Locked-Text Gated-Image | 65.8  68.6 68.6

B.2. Discussions with Data-Centric Methods

It is recommended in [20] that the task learning capabil-
ities of machine learning (ML) systems can be measured
by task-level zero-shot transfer. This recommended evalu-
ation setting is further generalized in [16] by showing that
few/full-shot transfer consistently yields higher performance
than zero-shot transfer. We argue that the task learning ca-
pabilities of ML systems can be improved from both the
model and data perspectives. Most existing efforts devote
to model-centric methods such as efficient network architec-
tures [27], smarter training objectives [28], and scaling up
model size [8,29]. Data-centric methods are less explored,
where our retrieval-augmented approach attempts to fill this
data gap. We discuss the unique properties of REACT and
build the connections with existing data-centric paradigms.

Relation to K-LITE. To build transferable visual systems,
K-LITE [24] enriches entities in language supervision with
structural knowledge in WordNet [19] and Wiktionary [18],
in both model training and evaluation stages. It provides the
first strong evidence that structural knowledge is effective in
task-level transfer for CLIP/UniCL. Our paper is different in
two aspects: (i) Knowledge sources. K-LITE considers tex-
tual common sense knowledge bases, while ours considers
the web-scale image-text corpus. (ii) Motivation. K-LITE
aims to improve the generality of visual models via structural
human knowledge, while ours improves the customization
of visual models using a plug-and-play task instruction aug-
mentation process.

Relation to Self-Training. As a semi-supervised learning
algorithm, self-training [23, 26] provides pseudo labels to
the unlabelled images using a pre-trained neural (teacher)
model. Though sharing the similarity in expanding the task-
relevant data, the two methods are different in the augmented
knowledge: (¢) For an image, the supervision signal in self-
training is based on the teacher model’s internal “dark knowl-
edge” [1 1], which is limited in a fixed prediction space. The
supervision signal in our method is the paired text, which is
collected from web as the external knowledge, which may
contain richer semantics to describe the image. (i) We build
a retrieval process to acquire task-relevant images, which
is lacking in self-training. The two methods can mutually
benefit: self-training can start from our retrieval-augmented



pool, while we could use pseudo labels from self-training to
get additional supervision.

C. Implementation details

C.1. Training Details in Customization

Model architecture. We mainly conduct our experiments on
the vision Transformer backbones. For the ViT architecture,
we mainly follow the implementation from CLIP [20]. The
feature from the CLS token from the last visual encoder
layer is used as the visual feature. For the gated-image
experiments, we only add gated blocks to the last 6 layers.
The hidden/embedding dimensions for gated blocks are set
the same as the layer that it is added to. Following [!],
the gate values are initialized as zero, modulated by tanh
operator.

Training Protocol. We mainly follow CLIP [20] and
UniCL [28] to set up our training hyperparameters. For opti-
mization, we use AdamW [ 14] with a weight decay of 0.05
for all models. We set the learning rate to 0.0005 for locked-
text-gated-image experiments, and 0.00005 for locked-text
experiments. We use the same set of data augmentation
and regularization as in [28]. For experiments with 10M
retrieved samples, the models are trained for 32 epochs with
a batch size of 4096. For experiments with fewer retrieved
samples, the training epochs are adjusted accordingly so that
they have a similar number of optimization steps. For all
training, we used a cosine learning rate schedule, with 5000
iterations warmup.

C.2. Our Retrieval System

We implement our retrieval system using FAISS [13]. We
use its Hierarchical Navigable Small World (HNSW) ap-
proximate k£-NN lookup [17] to balance performance and
efficiency. Product quantization is used to reduce the in-
dex size. We use Autofaiss to select the optimal hyperpa-
rameters for the index, and build the index using FAISS
index factory. For LAION-400M, the selected configura-
tion is: OPQ256_768, IVF131072_HNSW32, PQ256x8.
We build two separate indexing systems for T2I and T2T
retrieval. For T2I retrieval, CLIP image features are used for
building the indexing system. For T2T retrieval, CLIP text
features are used.

We benchmark below the latency and the recall of the
HNSW £k-NN lookup on a server with 64 CPU cores. As
shown below, the indexing system is able to retrieve the
relevant vectors accurately and efficiently.

Latency R@1 R@10 R@20
0.57ms  84.8 94.8 97.5

C.3. Cost Estimation

We provide the cost estimation for the REACT pipeline. It
includes feature extraction of the retrieval pool, indexing for
the retrieval system, querying the indexing system to retrieve
relevant image-text pairs, and finally model customization.

Feature extraction. For feature extraction using CLIP ViT-
B/32 checkpoint, it takes around 250 T4 GPU hours, which
equates to roughly a day on a desktop with 4x RTX 3090
GPUs.

Build index. We build our index system on a cloud VM with
24 CPU cores. Using the selected configuration in Sec. C.2,
we can build the index system using FAISS within 20 hours.
Note that we use the CPU version of FAISS, and do not
leverage GPU acceleration for building the index.

Querying index. As shown in Sec. C.2, generating the
retrieval set for model customization using the indexing
system is very efficient. Typically, it takes less than 10
minutes to generate 10M indices for our retrieval pool.

Model customization. We train most of our models on a
compute node with 16 x V100 GPUs. For ViT-L checkpoints,
we use 2-node distributed training, each node with 16 x V100.
It takes around 16/28/42 hours to train the B32/B16/L14
checkpoint, respectively, with either locked-text or locked-
text-gated-image tuning strategy.

Remarks. Note that the feature extraction and building
index system only needs to be done once. They are readily
available for any queries from any domains. To make this
line of research more accessible, our retrieved subsets for
both ELEVATER and ImageNet will also be made available,
with an easy-touse toolkit to download the subsets without
storing the whole dataset locally. Therefore, researchers can
directly run experiments on model customization.

In conclusion, REACT framework provides an accessi-
ble way to explore the large-scale web-crawled image-text
dataset, and effectively and efficiently customize the models
to the domain-of-interest.
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