MixMAE Supplementary Material

A. Training Details

A.1. Hyperparameters of Pretraining and Finetun-
ing

We include details about the hyperparameters for reim-
plementation.
Pretraining. The default setting is in Table We use
xavier_uniform [7]] to initialize all Transformer blocks fol-
lowing original ViT [5]. We by default use batch size
of 1024 and scale the learning rate with linear rule [§]:
Ir=base_Ir x batch_size / 256.

config ‘ value
optimizer AdamW [16]
base learning rate 1.5 x 1072
weight decay 0.05

optimizer momentum 081, $2=0.9,0.95 [12]
learning rate schedule cosine decay [[15]
warmup epochs 40
augmentation RandomResizedCrop

Table 1. Pretraining on ImageNet-1K.

Finetuning on ImageNet-1K. The default setting is in
Table 2] We use layer-wise learning rate decay follow-
ing [1,3]. The decay ratio is swept in {0.7, 0.75, 0.8}, and
we find 0.7 performs best. Following pretraining, the learn-
ing rate is scaled with linear rule: lr=base_Ir x batch_size /
256.

Finetuning on other classification datasets. We reuse the
setting in Table [2] We adjust the drop path rate for each
dataset.

Finetuning on COCO. We use the Mask RCNN [10]
framework with the encoder of MixXMAE as its backbone.
We follow the training setting in [9}/13]]. In particular, we
use large-scale jitter [6] augmentation with 1024 x 1024 res-
olution and [0.1, 2.0] scale range. We use step learning rate
schedule with 0.25 epochs of warmup. We finetune Swin-
B/-L for 55/80 epochs. We use a layer-wise learning rate
and set the decay ratio to 0.85/0.9 for Swin-B/-L.
Finetuning on ADE20K. We use the UperNet [18]] frame-
work with the encoder of MixMAE as its backbone. We

config | value
optimizer AdamW
base learning rate 5x 1074
layer-wise Ir decay [1/3] 0.7
batch size 1024
weight decay 0.05

B1, $2=0.9,0.999
cosine decay

optimizer momentum
learning rate schedule

warmup epochs 5

training epochs 100 (B), 50 (L/H)
augmentation RandAug(9, 0.5) [4]
LabelSmooth [|17] 0.1

Mixup [21] 0.8
CutMix [20] 1.0

0.15 (B), 0.2 (L), 0.3 (H)

drop path [11]

Table 2. Finetuning on ImageNet-1K.

Type ‘ APPox  Apmask # Images (ratio) ‘ APbox Apmask
Mix 515 459 2(0.5) 515 459
Zero 51.0 45.3 2 w/ [M] (0.75) 512 45.4
Learnable | 50.9 45.1 3(0.67) 51.6 459
Shuffle 46.5 41.6 4(0.75) 52.3 46.4
Zoomin 47.9 42.6 5(0.8) 514 45.4

Table 3. Filling content. ~ Table 4. Number of mixing images.

finetune for 16K iterations with a batch size of 16. We
use the layer-wise learning rate and set the decay ratio
to 0.85/0.9 for Swin-B/-L. We adopt others settings from
BEIT [1]].

A.2. Additional Results of Ablation Studies
A.2.1 Ablation results on COCO

We show more results of our ablation studies on COCO
benchmark in Table B|@|[5][6l We find that the performance
on the COCO is similar to that on ADE20K.

A.2.2 Pretraining Time Comparison

We compare the wall-clock time of the pretrain in Table [§]
The pretrain time is measured on 8 NVIDIA-A100-SXM-
80GB GPUs with a total batch size of 1024.



APmask

# EpOChS ‘ APPox Dual ‘ Aanx APmask
@ | 322 ies /|85 4
900 | 524 467 X 0.0 444

Table 5. Pretraining epochs. Table 6. Dual reconstruction.

ular, we use ResNet50x3 and ResNet101x3 as the encoder
and compare the finetuning results on ImageNet-1K with
BiT [12]. To reduce the difficulty of the pretext task, we
extend the idea of partial convoluation [[14f] and propose a
mixed version, as illustrated in Figure m

We compare the results in Table [0} In particular, our
MixMAE outperforms BiT-S by a large margin with half

Method Backbone Pretrain Epochs  Top-1 Acc.
Supervised ViT-B - 81.8
MAE ViT-B 1600 83.6
BEIiT ViT-B 800 83.2
MixMAE ViT-B 600 83.8

Table 7. Performance of MixMAE and other methods on ViT.

the input size. We note that BiT-M achieves better results
by pretraining with 10 x larger dataset ImageNet-21K. We
believe the results of MixXMAE can be further improved by
using much larger datasets as shown by [1]], and we leave it
as future work.
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Figure 1. Mixed convolution.
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