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A. Detailed calculation of the supernet gradi-
ent variance

During the supernet training, we record the gradient dw
of each parameter w ∈ W after each training step, using the
gradient generated by the normal back-propagation. After
an epoch of training, we utilize the recorded information to
compute the gradient variance σ2

w of each parameter w ∈
W as below,

σ2
w =

1

S

S∑
s=1

(dws − µw) (14)

where S is the sampled times for the parameter w and µw

stands for the average gradient of w during updates.
By collecting the gradient variance of each parameter

w ∈ W , we calculate the average value to represent the
supernet gradient variance σ2

N , which can be formulated as

σ2
N = Ew∈W [σ2

w] (15)

B. Additional experiments
B.1. More evidence for GV-KT

We conduct two more ablation experiments on NAS-
Bench-201 [3] and the search space 3 of NAS-Bench-
1Shot1 [12] to provide more evidence for the relationship
of GV and KT. Firstly, we freeze the supernet operations
and adopt different weight-sharing extent as CLOSE [14]
to construct two supernets (S1 and S2). All candidate op-
erations share the same copy of weights for each cell in S2,
while each operation has its own weights in S1. As a result,
S2 has an obviously higher weight-sharing extent than S1
with other factors fixed such as candidate operations and

*Corresponding author.

Supernet2 Supernet1 PA&DA
3

4

5

6

7

8

G
V

 (×
1e

-5
)

0.4

0.5

0.6

0.7

K
T

KT on NB201
GV on NB201
KT on NB1Shot1
GV on NB1Shot1

(a) Effect of weight-sharing extent
0 1e-5 1e-3

3

5

7

9

11

13

G
V

 (×
1e

-5
)

0.2

0.4

0.6

0.8

K
T

KT on NB201
GV on NB201
KT on NB1Shot1
GV on NB1Shot1

(b) Effect of adding noise

Figure 6. (a) GV and KT with different weight-sharing extents.
(b) GV and KT with different noises.

the search space. We use the same configuration to train
these two supernets and record the KT and GV in Fig.6
(a). We can see that S2 suffers from higher GV than S1,
resulting in lower KT than S1 on both benchmarks, show-
ing that larger GV harms the supernet ranking consistency.
Furthermore, we conduct another experiment by freezing
the supernet operations and weight-sharing extent and only
adding small noise (1e−5∼1e−3) to gradients of candidate
operations during training, which increases GV and dete-
riorates the KT. Results are shown in Fig.6 (b) and larger
GV hampers the supernet training when compared with the
baseline without noise.

B.2. GV-KT results of more methods

We calculate the GV and KT of different methods on
NAS-Bench-201 using the CIFAR-10 dataset. The results
are summarized in Fig.7 (a). Note that with GV getting
larger, KT generally decreases, demonstrating that larger
GV corresponds to lower KT.
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Figure 7. (a) GV-KT results of different methods on NAS-Bench-
201. (b) Results of longer training epochs on NAS-Bench-201 and
NAS-Bench-1Shot1.

B.3. Benchmark results of more training epochs

We provide the results of more training epochs on NAS-
Bench-201 and the search space 3 of NAS-Bench-1Shot1
following CLOSE [14] in Fig.7 (b). We can see that
PA&DA converges faster and constantly performs better
than the baseline SPOS [4]. KT of PA&DA at 250 epochs
is close to SPOS at 1K epochs on NAS-Bench-201, signif-
icantly saving time in practice. The highest KT of PA&DA
on NAS-Bench-201 and NAS-Bench-1Shot1-3 are 0.733
and 0.591 using 3.5 (500 epochs) and 10 (1K epochs)
GPU hours respectively. Note that CLOSE ranks the non-
isomorphic 6466 sub-models of NAS-Bench-201 and needs
to fine-tune the number of curriculums and GLOW blocks,
while PA&DA ranks all 15625 sub-models and no longer re-
quires time-consuming fine-tuning. When setting the path
smoothing parameter δ = 0.5 and ranking the same sub-
models as CLOSE did, we can achieve higher KT than
CLOSE (0.772 vs. 0.762). Furthermore, CLOSE explores
the dynamic weight-sharing extent during training, which is
orthogonal to our method.

C. Discussion with related works

[7] and [8] both use a biased sampling for the super-
net training. The former sampled the architectures in pro-
portion to the model sizes, which is not as accurate as our
gradient norm to locate the models with insufficient train-
ing. The latter proposed de-isomorphic sampling to mit-
igate the estimation bias and provided many meaningful
insights. However, it’s intractable to pick out the isomor-
phic ones in a huge search space and not applicable to the
search spaces without isomorphic architectures, for exam-
ple, the NAS-Bench-1Shot1-3. By contrast, our method is
more convenient and general. [11] attributed the failure of
NAS methods to weight-sharing and did not give a solution.
However, we find that an importance-based sampling can
alleviate this issue, thus we propose to jointly optimize path
and data sampling distributions during training to improve
the supernet consistency.

D. Re-training configuration

D.1. Settings in the DARTS search space

The experimental settings are consistent with previous
works [6, 10] to ensure a fair comparison. By stacking the
searched normal and reduction cells, the final architecture
consists of 20 layers and 36 channels. The final architec-
ture is re-trained on a single GPU 1 by a total of 600 epochs
using the training dataset and evaluated on the test dataset
to get the top-1 accuracy. The initial learning rate is 2.5e-2
and is then decayed to zero via a cosine strategy. We use
the SGD optimizer with the weight decay 3e-4, momen-
tum 0.9, and the training batch size 96. The auxiliary head
with a weight of 0.4 and the drop path [5] with a probabil-
ity of 0.2 are both adopted to mitigate over-fitting. We use
the Cutout [2] technique with the length 16 to augment the
training data. Besides, we set the threshold of the gradient
norm clipping as 5 for all trainable parameters.

D.2. Settings in the ProxylessNAS search space

The final architecture contains 21 layers, one of which is
the Identity layer. We use 8 GPUs 1 in parallel to re-train our
searched architecture on the ImageNet training dataset for
450 epochs and evaluate its performance on the validation
dataset. We use the RMSpropTF optimizer with an initial
learning rate of 0.16 and a step decay scheduler, which de-
cays the learning rate per 2.4 epochs with a reduction rate
of 0.97. The weight decay is 1e-5 and the momentum is
0.9. To mitigate over-fitting, we adopt the AutoAug [1] and
RE [13] for the data augmentation, and utilize both the drop
path [5] and Dropout [9] with the same rate 0.2. At the ini-
tial stage of the training, we utilize a small learning rate of
1e-6 for warm-up by 3 epochs. During training, the moving
average technique is employed to smooth the model weights
with a rate of 0.9999.

E. Visualization

E.1. Searched cells in DARTS search space

Our best-searched cells have been shown in Fig.3 of our
main text and we present the other two searched cells in
Fig.8. Although these searched cells have different op-
erations and typologies, we can find a common charac-
teristic of them: all the searched normal cells have many
sep conv 3×3 operations and have one skip connect op-
eration from the input node to one of the intermediate nodes.
We conjecture that these merits lead to the superior perfor-
mance of the searched cells.

1All of our experiments were conducted on the NVIDIA Tesla V100
GPU.
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Figure 8. Our searched cells in the DARTS search space.
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Figure 9. Our searched architecture in the ProxylessNAS search space. The expansion rate of short squares is 3 while being 6 for long
squares. Colors of green, blue, and yellow denote the kernel size 3×3, 5×5 and 7×7 of the depth-wise convolution in the MobileNet block,
respectively. The red square stands for the layer with the Identity operation.

E.2. Searched architectures in ProxylessNAS search
space

As shown in Fig.9, slimmer channels and smaller re-
ceptive fields are preferable at the beginning of the net-
work, thus our searched architecture adopts smaller expan-
sion rates and kernel sizes in shallow layers. On the con-
trary, the last 5 layers all choose the expansion rate 6 with
the largest kernel size 7, demonstrating that more channels
and larger receptive fields are necessary for encoding the
semantic information.
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