
Class-Incremental Exemplar Compression for Class-Incremental Learning
Supplementary Materials

Zilin Luo1 Yaoyao Liu2 Bernt Schiele2 Qianru Sun1

1Singapore Management University
2Max Planck Institute for Informatics, Saarland Informatics Campus

zilin.luo.2021@phdcs.smu.edu.sg {yaoyao.liu, schiele}@mpi-inf.mpg.de qianrusun@smu.edu.sg

These supplementary materials include implementation
details (§1), dataset details (§2), SOTA 95% CI results
(§3), learned PAU results (§4), compression footprint re-
sults (§5), sensitivity analysis results (§6), overhead analy-
sis results (§7), and hardware information (§8).

1. Implementation Details

Downsampling Method. Supplementary to Section 4.1
“Compression with BBox”. For generating compressed
exemplars, we adopted a simple downsampling method
(to apply on non-discriminative pixels) called Nearest
Neighbor Interpolation [11]. Specifically, it replaces the
pixel value with that of the nearest pixel. This can be
achieved by calling the cv2.resize() function with the
INTER NEAREST flag in the standard image processing li-
brary OpenCV [2].
Mitigating the Effect of Compression Artifacts. Sup-
plementary to Section 4.1 “Compression Artifacts”. We
mitigated the effect of compression artifacts by applying a
augmentation method to new-class data Di in each learning
phase. Specifically, there were three steps. 1) For all im-
ages in Di, we generated the CAM-based bounding boxes
at the beginning of training and updated them once per 40
epochs. 2) In each epoch, we randomly selected a subset of
Di. The proportion of the subset was adjusted according to
the training progress—0 at the beginning and increased by
0.1 every 40 epochs. 3) Before feeding each image in the
subset (into the CIL model), we downsampled (with ratio
η) the pixels outside the bounding box (obtained in step 1).
Compressing Di into D̃i(ϕi). Supplementary to Section
4.2 “2) Mask-level Optimization”. Different from the
compressed pipeline introduced in Section 4.1, compression
in the inner-level optimization should involve only differen-
tiable operations to enable gradient descent. To achieve this,
we skipped the steps of adding the threshold and bounding
box and obtained the compressed images by applying con-

tinuously valued masks as follows,

A(ϕi) = ω⊤
i,yF (x; θi, ϕi), (S1a)

MCAM(ϕi) =
A(ϕi)−min (A(ϕi))

max (A(ϕi))−min (A(ϕi))
, (S1b)

x̃(ϕi) = MCAM(ϕi)⊙ x+ (1−MCAM(ϕi))⊙ xη.
(S1c)

Comparing with Other Compression-based Methods.
Supplementary to Table 4. The code of plugging
MRDC [15] into PODNet [5] (which shows the best results
in its original paper) was not released by authors. So we re-
run the results of MRDC when plugging it into LUCIR [6].
The experiments are conducted on the LFH setting. For a
fair comparison, we apply weight transfer operations [13]
in all these experiments following Mnemonics [8].

2. Dataset Details
Supplementary to Section 4.1 “Datasets”. We show the

details about three datasets in Table S1. We elaborate the
image preprocessing methods applied on the three datasets
in Table S2. Please note that for image preprocessing, we
strictly followed [5–8, 12, 14, 16] for a fair comparison.

3. More Results Comparing with the SOTA
Supplementary to Table 1. In Table S3, we report the

95% confidence intervals corresponding to the numbers in
the Table 1 of the main paper.

4. Results of Learned PAUs
Supplementary to Section 5.2 “Results and Analyses”..

Figure S1 shows the activation distances in different net-
work blocks and phases. We measure the distance by∫ 3

−3
|fPAU(x)−fReLU(x)|dx and use 601 interpolated points

to approximate the integration value. The learned PAUs in
the last block have larger distances than those in shallow

1

Dataset #Classes #Training images #Test images Avg. size

Food-101 [1] 101 75,750 25,250 475×496
ImageNet-100 [12] 100 129,395 5,000 407×472
ImageNet-1000 [4] 1,000 1,281,167 50,000 406×474

Table S1. Details of the three datasets. The “Avg. size” colume shows the average height×width of images of each dataset.

Training transformation Test transformation CAM transformation

RandomResizedCrop(224), Resize(256), Resize((224,224)),

RandomHorizontalFlip(0.5), CenterCrop(224), ToTensor(),

ColorJitter(63/255), ToTensor(), Normalize().

ToTensor(), Normalize().

Normalize().

Table S2. Uniform image preprocessing methods for the three datasets. “CAM transformation” denotes the preprocessing method for
generating CAM [18]. The mean and standard deviation parameters of Normalize() are omitted. Note that FOSTER [14] additionally
applies AutoAugment [3] in the training transformation, and we followed it for fair comparison.

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5 6 7 8 9 10

d
is

ta
n

ce

#phases (N=10)

 before last block

 last block

Figure S1. The average activation distances between ReLU [10]
and the learned PAUs [9] before and in the last block over all
phases. The experimental setting is N=10 (LFS) on ImageNet-
100. The curves are smoothed with Gaussian (σ = 2).

blocks. The last block mainly encodes high-level semantic
information (e.g., “body” of “dog”), this suggests that the
learned PAUs are adjusted to focus on the most discrimina-
tive semantics. Shallow blocks learn to capture low-level
features that are shareable between classification and mask
generation. Therefore, the learned PAUs in these shallow
blocks have little adjustment. This motivates the variant in
Row 10 of Table 3 in the main paper.

5. Results of Compression Footprints.

Supplementary to Section 5.2 “Results and Analyses”..
Figure S2 provides the compression footprints along in-

1.85

1.9

1.95

2

2.05

1 2 3 4 5

co
m

p
re

ss
io

n
 r

at
e

#phases (N=5)

 CAM CIM

Figure S2. The compression rates resulted from CAM and CIM.
The experimental setting is N=5 (LFS) on ImageNet-100.

cremental phases. Comparing with CAM, CIM learns to
produce more conservative compression footprints in later
phases. Our explanation is that more visual cues are re-
quired to classify more classes.

6. Results of Sensitivity Analyses

Supplementary to Section 5.1 “Implementation De-
tails”. In Figure S3, we show the sensitivity analyses for
CAM threshold τ , downsampling ratio η, mask-level learn-
ing rates β1, β2 and two regularization weights µ, µ′ on
ImageNet-100 [12]. For τ and η, we also show the com-
putation overheads.

Method
Learning from Scratch (LFS) Learning from Half (LFH)

Food-101 ImageNet-100 Food-101 ImageNet-100

N=5 10 20 5 10 20 5 10 25 5 10 25
iCaRL [12] 0.58 1.11 1.50 0.98 0.64 - 1.24 0.96 0.42 0.86 1.48 1.37
WA [17] 0.43 0.36 2.04 0.65 0.75 - 0.38 0.30 1.54 1.33 - -
PODNet [5] 0.92 1.91 1.83 1.08 1.87 - 0.80 1.37 1.46 0.29 1.05 2.77
AANets [7] 0.83 1.56 0.74 1.31 1.07 2.01 1.12 0.48 1.22 0.53 0.74 0.81
DER [16] 0.47 0.62 0.94 0.46 0.39 - 0.56 0.68 - 0.51 - -
DER w/ ours 0.28 0.75 1.10 0.32 0.24 0.65 0.17 0.52 - 0.41 0.53 -
FOSTER [14] 0.34 0.43 0.89 0.51 0.53 - 0.34 0.32 0.60 0.07 - 0.38
FOSTER w/ ours 0.45 0.22 1.25 0.36 0.42 0.54 0.26 0.17 0.52 0.44 0.18 0.61

Table S3. The 95% confidence intervals (%) for the results in Table 1.

7. Space and Computation Overheads

Supplementary to Section 4.2 “Limitations”. We elabo-
rate on the space overhead by taking ResNet-18 as an ex-
ample. We add 17 PAUs to it, each with 10 optimizable
parameters. So we use 170 extra parameters in total. This is
negligible compared to 11 million of network parameters.
Besides, we save bbox along with exemplars in the mem-
ory. Each bbox takes around 0.01% memory of a 224×224
RGB image. For computation overhead, our method needs
around 60% extra computations over baseline CIL training,
caused by two factors: 1) BOP between CIL and CIM mod-
els; and 2) training on a large number of compressed exem-
plars.

8. Hardware Information

– CPU: AMD EPYC 7F72 24-Core Processor
– GPU: 4× NVIDIA GeForce RTX 3090
– Mem: 8× DDR4-3200 ECC RDIMM - 32GB

References
[1] Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool.

Food-101 – mining discriminative components with random
forests. In ECCV, 2014. 2

[2] Gary Bradski. The opencv library. Dr. Dobb’s Journal: Soft-
ware Tools for the Professional Programmer, 2000. 1

[3] Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasude-
van, and Quoc V Le. Autoaugment: Learning augmentation
strategies from data. In CVPR, 2019. 2

[4] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In CVPR, 2009. 2

[5] Arthur Douillard, Matthieu Cord, Charles Ollion, Thomas
Robert, and Eduardo Valle. Podnet: Pooled outputs distilla-
tion for small-tasks incremental learning. In ECCV, 2020. 1,
3

[6] Saihui Hou, Xinyu Pan, Chen Change Loy, Zilei Wang, and
Dahua Lin. Learning a unified classifier incrementally via
rebalancing. In CVPR, 2019. 1

[7] Yaoyao Liu, Bernt Schiele, and Qianru Sun. Adaptive ag-
gregation networks for class-incremental learning. In CVPR,
2021. 1, 3

[8] Yaoyao Liu, Yuting Su, An-An Liu, Bernt Schiele, and
Qianru Sun. Mnemonics training: Multi-class incremental
learning without forgetting. In CVPR, 2020. 1

[9] Alejandro Molina, Patrick Schramowski, and Kristian Ker-
sting. Padé activation units: End-to-end learning of flexible
activation functions in deep networks. In ICLR, 2019. 2

[10] Vinod Nair and Geoffrey E Hinton. Rectified linear units
improve restricted boltzmann machines. In ICML, 2010. 2

[11] J Anthony Parker, Robert V Kenyon, and Donald E Troxel.
Comparison of interpolating methods for image resampling.
IEEE Transactions on Medical Imaging, 1983. 1

[12] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg
Sperl, and Christoph H Lampert. iCaRL: Incremental classi-
fier and representation learning. In CVPR, 2017. 1, 2, 3

[13] Qianru Sun, Yaoyao Liu, Tat-Seng Chua, and Bernt Schiele.
Meta-transfer learning for few-shot learning. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 403–412, 2019. 1

[14] Fu-Yun Wang, Da-Wei Zhou, Han-Jia Ye, and De-Chuan
Zhan. Foster: Feature boosting and compression for class-
incremental learning. arXiv, 2022. 1, 2, 3

[15] Liyuan Wang, Xingxing Zhang, Kuo Yang, Longhui Yu,
Chongxuan Li, Lanqing Hong, Shifeng Zhang, Zhenguo Li,
Yi Zhong, and Jun Zhu. Memory replay with data compres-
sion for continual learning. In ICLR, 2022. 1

[16] Shipeng Yan, Jiangwei Xie, and Xuming He. Der: Dynam-
ically expandable representation for class incremental learn-
ing. In CVPR, 2021. 1, 3

[17] Bowen Zhao, Xi Xiao, Guojun Gan, Bin Zhang, and Shu-
Tao Xia. Maintaining discrimination and fairness in class
incremental learning. In CVPR, 2020. 3

[18] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva,
and Antonio Torralba. Learning deep features for discrimi-
native localization. In CVPR, 2016. 2

1

1.5

2

2.5

76.6

77.1

77.6

78.1

0.4 0.5 0.6 0.7 0.8

o
v

er
h

ea
d

 (
ti

m
es

)

ac
cu

ra
cy

 (
%

)



(a) Masking threshold τ .

1

1.5

2

2.5

76.6

77.1

77.6

78.1

2 3 4 5 6

o
v

er
h

ea
d

 (
ti

m
es

)

ac
cu

ra
cy

 (
%

)



(b) Downsampling ratio η.

76.6

77.1

77.6

78.1

0.01 0.03 0.1 0.3 1

ac
cu

ra
cy

 (
%

)

1

(c) Inner-level learning rate β1.

76.6

77.1

77.6

78.1

0.001 0.003 0.01 0.03 0.1

ac
cu

ra
cy

 (
%

)

2

(d) Outer-level learning rate β2.

76.6

77.1

77.6

78.1

0.01 0.03 0.1 0.3 1

ac
cu

ra
cy

 (
%

)

μ

(e) ℓ2 regularization weight µ.

76.6

77.1

77.6

78.1

0.02 0.06 0.2 0.6 2

ac
cu

ra
cy

 (
%

)

μ’

(f) CE regularization weight µ′.

Figure S3. Results of hyperparameter sensitivity.

	. Implementation Details
	. Dataset Details
	. More Results Comparing with the SOTA
	. Results of Learned PAUs
	. Results of Compression Footprints.
	. Results of Sensitivity Analyses
	. Space and Computation Overheads
	. Hardware Information

