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Scores Overall Sub. Verb. Obj.
Pos. 0.79 0.82 0.76 0.86
Neg. 0.21 0.18 0.24 0.14
Dif. 0.59 0.64 0.52 0.72

Table 1. Preliminary study on CLIP’s [6] understanding of dif-
ferent aspects of the language. The number indicates the average
similarity score. The column indicates the negative sample type:
“Sub.” denotes the negative sample does not correspond to the sen-
tence by subjects; “Obj.” denotes objects.

In this material, we present more analysis and exper-
iments for our method (VDI). Sec. 1 provides additional
statistical analysis of the image-text pre-training models.
Sec. 2 provides more ablations on implementation details.

1. Preliminary Study on CLIP

A key challenge for video moment retrieval (VMR) is
to understand the actions from both the visual and the tex-
tual modality. To study if image-text pre-training methods,
such as CLIP [6], can encode action information, we design
an experiment to determine if their pre-training models can
distinguish different types of verbs or if they rely solely on
nouns in a given sentence. To do so, we design experiments
with the dataset [3] which provides image-text triplets with
each including a sentence, a positive image and a nega-
tive image. Specifically, the positive image is correctly de-
scribed by the sentence, and the negative image does not
match the sentence from one specific aspect (i.e. subject,
verb or object). In Table 1, each triplet is categorised by
its negative type (Sub., Verb. or Obj.), and we report their
scores according to the category type to study the model’s
understanding of different aspects of the language.

Given an image-text triplet (a sentence, a positive image,
and a negative image), we take the pre-trained CLIP [6] to
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λvc λsd
R@1, R@1, mIoUIoU=0.5 IoU=0.7

0 0 43.85 24.17 39.50
0.1

0
44.04 28.35 41.42

0.5 45.47 29.35 40.61
1 42.45 24.17 38.70

0
0.1 44.70 25.61 39.70
0.01 44.60 26.06 40 .09
0.001 43.60 25.32 39.19

0.5
0.1 45.18 27.91 41.05
0.01 46.47 28.63 41.60
0.001 45.47 27.31 41.28

Table 2. Ablation study on the loss weight λvc and λsd.

calculate the similarity score between the image with the
positive sentence (Pos.) and that between the image with
the negative sentence (Neg.). The scores are normalised
in each triplet, and the difference (Dif.) between the pos-
itive and negative scores is calculated. Table 1 shows the
averaged score for the whole dataset. The difference be-
tween the positive and negative scores indicates how well
the model can distinguish between the matched and un-
matched images, with smaller differences indicating a more
confused model. From the results, it can be seen that CLIP
is more likely to assign higher scores to negative samples
of the verb type, and the difference between positive and
negative is less pronounced than for the other types. For the
data samples of the verb type, as the negative image does
not match the sentence only from the verb part, a smaller
difference between the negative and positive indicates that
the verb is less discriminative and more challenging than
the subject and object.

In our method, we investigate the problem that it is hard
for CLIP to capture video changes, and propose to inject vi-
sual context and spatial dynamic information into the words
describing video changes.
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Lvc Lsd R@1, R@1, mIoUIoU=0.5 IoU=0.7
Con. Rel. 46.47 28.63 41.60
Con. Con. 45.32 28.35 41.08
Rel. Rel. 38.56 23.31 36.20

Table 3. Ablation study on the loss implementation for Lvc and
Lsd. “Con.” denotes the consistent implementation, “Rel.” denotes
the relational implementation. “Con.”/“Rel.” for Lvc/Lsd is our
default setting.

Method R@1, R@1, mIoUIoU=0.5 IoU=0.7
Q.Inj. 44.89 26.04 39.52
Qd.Inj. 46.47 28.63 41.60

Table 4. Ablation study on the dynamic query emphasis. “Q.Inj.”
denotes injecting information into the sentence query Q. “Qd.Inj.”
is our default setting which injects information into the dynamic
query.

2. Ablation Study
In this section, we provide more ablation studies on

model design choices. We report the performance under
Charades-STA[1] with OOD novel-word split [5] by de-
fault.

Loss Weight. Table 2 shows the performance with the
loss weight λvc for Lvc and λsd for Lsd. λvc/λsd = 0/0 de-
notes the baseline without our design. As one can see from
the result, we take the 0.5/0.01 for λvc/λsd as the default
setting.

Loss Implementaion. In our experiments, we use a con-
sistent implementation for Lvc to encourage the consistency
of the text embedding to the visual context. And we use a re-
lational implementation for Lsd to enforce the correlations
between the spatial dynamic features of different videos
with their corresponding descriptions. In Table 3, we ab-
late the different loss implementations (Consistent (Con.)
vs Relational (Rel.)) for Lvc and Lsd. For visual con-
text injection, relational implementation will force differ-
ent sentences sharing similar visual context to be similar,
which will confuse the learning process as they may de-
scribe unrelated actions. For spatial dynamic injection, re-
lational implementation will encourage different sentences
sharing similar motion patterns to focus on the common de-
scriptions of such spatial dynamic information.

Dynamic Query Emphasis. In our model design, we
inject the visual context and spatial dynamic information
into the text with a focus on words describing the video
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Figure 1. The visualisation of the weight of each word for
Charades-STA [1] and ActivityNet-Captions [4]. The x-axis rep-
resents the weight from the last Transformer[9] layer in the text
encoder. The y-axis represents the number in percentage.

Method Pre-train R@1, R@1, mIoUIoU=0.5 IoU=0.7
MMN[10] Separated 41.59 23.60 37.90
VDI(Qs) 41.29 24.46 38.21
MMN[10]

Joint
43.85 24.17 39.50

VDI(Qh) 46.01 27.05 40.94
VDI(Qs) 46.47 28.63 41.60

Table 5. Ablation study on visual context generation. The “Pre-
train” column indicates how the feature extractors are pre-trained.
“Separated” denotes the features are pre-trained separately and no
pre-learned visual-textual correlations are provided.

Method Feature R@1, R@1,
IoU=0.5 IoU=0.7

MMN[10] VGG-Separated 47.31 27.28
MMN[10] ViT-Joint 50.48 29.65
VDI 52.32 31.37
MMN[10] ResNet-Joint 52.88 32.02
VDI 53.98 33.20

Table 6. Evaluation on the original testing split. The “Feature”
column denotes the method using separated or joint pre-training
backbones.

changes (dynamic query Qd). In this ablation, we demon-
strate the necessity to emphasise the dynamic query Qd with
a comparison with injecting information into the sentence
query Q. As one can see from the Table 4, Qd injection
(Qd.Inj.) can yield better performance than Q injection
(Q.Inj.). To understand this result, we calculate the weight
map of the last Transformer [9] layer in the text encoder and
average them by their speech parts (Nouns, Verbs and Oth-
ers). The weight of each word indicates the contribution to
the sentence feature. As shown in Fig. 1, we observe that
the CLIP pre-trained model intends to focus more on nouns
as the sentence feature, thus less on the learning of verbs.
This explains the necessity to highlight the dynamic query.

Visual Context Generation. For visual context injection,
we apply a static query Qs guided visual context genera-



tion, taking advantage of the pre-learned visual and textual
correlations from CLIP [6]. In Table 5, we prove that the
pre-learned visual-textual correlation is important by a com-
parison with different visual context generations.

In Table 5 (Row 2), we apply our method with sepa-
rated pre-training models and follow the setting as our base-
line [10] to use the VGG model [8] as the visual encoder and
the DistilBERT [7] as the textual encoder. As one can see
from the result, the separated pre-training feature is sub-
optimal to the VMR task. This is partially because it is
challenging to generate visual context information without
visual-textual correlations.

In Table 5 (Row 4), we randomly select half of the words
in the sentence as the query (Qh) for visual context extrac-
tion, and the rest of the sentence is injected with visual-
dynamic information. One can see from the result that
such a random combination of object and dynamic descrip-
tions in Qh can not fully take advantage of the pre-training
visual-textual correlations.

Feature Backbone. To further validate the generalisation
of our method, we take the ResNet [2] backbone provided
by CLIP [6] for feature extraction. We report the perfor-
mance under the original split in Table 6, which shows that
our method is also effective under ResNet backbones.
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