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1. Detailed Derivations
1.1. Derivation of Standard Diffusion Models

In the paper submission, we present a standard diffu-
sion model for trajectory prediction following the diffusion-
denoising process. Here we elaborate on the details of the
diffusion-denoising process.

In standard diffusion models, the diffusion process is oper-
ated on the future trajectory Y, while the past trajectories X
and X serve as a condition for the denoising process. Mathe-
matically, let Y7 be the diffused future trajectory at step -,
being a basic state in the bidirectional Markov chain of the
diffusion-denoising process. We have the start state YO =Y
and the end state Y'' ~ NV(Y";0,1). We restate the overall
procedure of diffusion models for trajectory prediction here,
following

Y=Y, (1a)
Y7 = faituse(Y' 1), v =1, T, (1b)
YL A P(YT) = N(YT;0,1), sample K times, (1c)

Y] = faenoise(Y7 T, X, Xn), y=T=1,---0,  (1d)
where we use the faifruse (+) to represent the diffusion process
and fgenoise () to represent the conditional denoising process.
Here we present the details of these two processes.

Forward diffusion process. Let (Y°, Y! ..., YT) be
the forward I'-steps Markov chain constructed by the dif-
fusion model where Y7 is the diffused future trajectory at

step . The forward diffusion process between two steps is
defined as

qY' Y ) =N(Y"/1-6, Y"1, 8,1),
=Y =/1-38,Y"'+./33,
where z ~ N (z;0,1) and 1, 32, . . ., Or are the diffusion

parameters controlling the distortion between two steps. In
the forward diffusion process, we can directly sample ~yth
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step diffused trajectory Y7 directly using
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where we set the diffusion parameter .y := 1 — 3, and use
the reparameterization to merge two Gaussian distributions.
Note that the forward process is non-trainable and with suffi-
cient steps, the final state YT ~ ¢(YT') will be approximate
to sample in a normal distribution, i.e., YT ~ N(Y';0,1).

ACollditional denoising process. Conversely, denote
(YT, ¥YT=1 ... Y?) as the reverse denoising process con-
ditioned on context information extracting from past tra-
jectories, i.e. C = feondition(X,X). We formulate the
conditional denoising process as follows:

1—ayz,

pg(Y7_1|Y'y,C) = N(Yv_l;“g(Y’Y’ C)7/8"/I)7
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where z ~ N (z;0,I), oo, = 1 — _
are the diffusion parameters at step 7, and pg(-) € RTE*2
is the core denoising module with the learnable parameters
6. Note that we have specified the mean term and simplified
the variance term in Eq.(2) following DDPM [ 1] so that we
can derive the noise estimation loss.

1.2. Derivation of Noise Estimation Loss

Here we elaborate on the derivation of our noise estima-
tion loss, the overall target of diffusion models is to maxi-
mize the pg(Y°|C).
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where we derive the variational lower bound (VLB) to mini-
mize the negative log-likelihood.

q(leFlY())
= Eq(yo) —logpe(Y°|C) < Eyyour)[log m]
I
po(Y77 Y7, C) r
=F —log—/——— " — "~ 1] Y
DD S SO
r
pe(Y'"'Y7,C)
= B[S log 2= o)
128 = )
po(YOYL, C
+ log w +log pa(Y")]
Zl (pe (Y 'Y7,C) Q(Y’*‘llYo))
YUY, Y0 q(YTYO)
()
p ,C
+log w +logpe(Y")]
I
po(Y' 'Y, C g(Y'THY")
[g %8 J(Y7T Y7, Y0) *Z (Y 7Y0)
pe(YOIYL C
+ log w +log po(Y")]
po(YT) (Y"1Y",C)

r
ol
—l—%lo (YT 1Y, Y0)

+ log pg (Y0|Y1, C)]

g(YT[YO)

where the first term can be ignored since there are no train-
able parameters in pg(YT). Then, we only need to focus
(Y71 Y,Y?)
po(Y7~ 1Y, C)
is given in Equation (2). We can derive the close form for

on the second term E,[log | where pg(+)

pe(Y'l:l—‘|YO7 C)

]

q(Y7'71Y7,Y?) with the Bayes’ rule,

q(Y'"L Y7 Y?)
q(Y7[Y?)
(YT Y )g(Y Y1, Y0
a(Y7[Y?)
a(Y Y )q(Y Y )
q(Y7Y?)

(Y'Y, Y?) =

where ¢(Y771Y?),q(Y?[Y?71), and ¢(Y?|Y?) are all
Gaussian distributions, which indicates the target distribution
q(Y7'71Y7,Y") also has the Gaussian form. Follow [1],
suppose ¢(Y?'1Y7,Y?) = N (Y"1 u?, 3,1), where

w = VaV(l_@V—l) \/O"Y 1/6"/Y0
1—a, 1-a,
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where € ~ N (€;0,1). Then, we only need to minimize the
means between two distributions and get the noise estimation
loss:

Lng = € — 63(37”, C)llz,

2. Experiment Details

We apply a standard diffusion model with the diffusion
step I' = 100, the start value 3; =le-4, and the end value
B1o0 =5e-2. We use the linear schedule to interpolate the
intermediate values (3o, 33, - - - , Bog.

On SDD, following previous destination prediction strate-
gies [2, 3], we first predict the destination of a pedestrian
using the proposed leapfrog diffusion model. And then, we
fulfill the trajectory using the multi-layer perceptron.

3. Supplementary Experiments
3.1. Influence of Diffusion Parameters

We explore the influence of different parameters in the
diffusion model, including the denoising steps I', the start
value of /31, the end value of Sr, and the schedule to generate
[3’s; see Table 1. We see that i) 1 = le — 4, fr = be —
2,T" = 100 provides the best performance for the standard
diffusion model; ii) with the fixed 31 and Br, the schedule
to generate the intermediate parameters will not influence
the performance lot, also the linear schedule provides the
best performance; and iii) when the diffusion step I is too
small, the denoising step is not equivalent to estimating the
Gaussian noise, deteriorating the performance.

3.2. Influence of Different Encoders

In the leapfrog initializer, we use a social encoder to cap-
ture social influence, a temporal encoder to learn temporal



Table 1. Influence of different parameters in the standard diffusion
models on SDD. We run 5 times for each setting with K'=20 and
report the average and best performance.

Diffusion Parameters AVG Best
B1 | Br | T |schedule | minADE minFDE | minADE minFDE

20 |linear 19.27 32.77 10.42 19.19
50 |linear 11.04 17.75 9.94 15.95
linear 10.36 16.92 9.73 15.32
100 |sigmoid | 10.65 16.87 9.76 15.52
quadratic | 10.55 17.87 9.84 15.77
200 | linear 10.70 18.03 10.24 16.98
500 | linear 10.94 18.68 10.45 17.68
1000 | linear 11.27 19.01 1091 18.26
le-5|5e-2 | 100 |linear 10.43 17.45 9.92 16.03
le-4 | 1e-2 | 100 |linear 25.80 48.29 12.70 21.37
le-5|1e-2| 100 |linear 26.91 44.85 12.52 21.06

le-4 | S5e-2

Table 2. Influence of different social-temporal structures in the
leapfrog initializer on SDD. We run 5 times for each setting with
K=20 and report the average and best performance.

Encoder \ AVG \ Best
Structure ‘ minADE minFDE ‘ minADE minFDE
without social 8.69 12.07 8.64 11.93
sequential 8.65 11.94 8.60 11.81
parallel 8.47 11.54 8.46 11.47

embedding, and an aggregation layer to fuse both social
and temporal information. Here we explore the influence of
different encoders including without considering the social
information (without social), sequential structure to fuse the
social-temporal information (sequential), and the parallel
structure used in the paper submission (parallel); see Table 2.
We see that i) the parallel structure provides the best perfor-
mance since the social-temporal information is decoupled
without influencing each other; and ii) the social force will
influence the agent’s movement since considering the so-
cial embedding outperforms the without social embedding
structure.
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