
Unsupervised Deep Probabilistic Approach for Partial Point Cloud Registration
–Supplementary Material–

A. Appendix
In this supplementary material, we first describe the de-

tailed feature extractors in Sec. A.1, then we provide the
details of the Transformer in Sec. A.2, followed by solving
Eq. (6) in Sec. A.3. We also give the definitions of evalua-
tion metrics in Sec. A.4. Finally, we provide more registra-
tion results in Sec. A.5.

A.1. Feature Extractor

Our UDPReg adopts a KPConv [41]-based encoder-
decoder architecture for feature extraction, where we add
a lightweight Transformer for context aggregation. The
configurations of KPConv and ResBlock are the same as
in [19]. On 3DMatch, following [38], we first downsam-
ple the input point clouds with a voxel size of 2.5cm, then
send the downsampled point clouds into the feature extrac-
tor. The detailed network configurations are shown in Ta-
ble 6.

Table 6. Network architecture for 3DMatch and ModelNet.
Stage 3DMatch ModelNet

1 KPConv(1→64) KPConv(1→256)
ResBlock(64→128) ResBlock(256→256)

2
ResBlock(64→128, strided) ResBlock(256→512, strided)

ResBlock(128→256) -
ResBlock(256→256) -

3
ResBlock(256→256, strided) ResBlock(512→512, strided)

ResBlock(256→512) ResBlock(512→512)
ResBlock(512→512) -

4
ResBlock(512→512, strided) ResBlock(1024→1024, strided)

ResBlock(512→1024) -
ResBlock(1024→1024) -

5 - ResBlock(1024→1024, strided)
- ResBlock(1024→1024)

6 - ResBlock(1024→1024, strided)

7 Conv1D(1024→256) Conv1D(1024→256)
Transformer(256→256) Transformer(256→256)

8 NearestUpsampling NearestUpsampling
UnaryConv(1537→512) UnaryConv(1537→512)

9 NearestUpsampling NearestUpsampling
UnaryConv(768→256) UnaryConv(768→512)

10 Linear(512→257) Linear(256→129)

A.2. Transformer

The transformer is composed of three main com-
ponents: self-attention, positional encoding, and cross-
attention. Geometric self-attention is utilized to capture

long-range dependencies, while positional encoding assigns
intrinsic geometric properties to each point feature, thereby
increasing differentiation among features in areas where
they may be indistinct. The cross-attention module lever-
ages the connections between the source and target point
clouds, enabling the encoding of contextual information be-
tween partially overlapping point clouds. The individual
parts will be described in detail below.

Self-Attention. We use the geometric self-attention pro-
vided in GeoTransformer [38] for self-attention.

Positional Encoding. Following [31], incorporating a po-
sitional encoding approach, which imparts intrinsic geomet-
ric attributes to individual point features through the inclu-
sion of unique positional information, improves differenti-
ation among point features in less distinctive regions. To
begin with, we choose the k = 10 nearest neighbors Ki

of p̄s
i and calculate the centroid p̄s

c =
∑N̄s

i=1 p̄
s
i of P̄s,

where p̄s
i and p̄s

j represent two superpoints of P̄s. For each
p̄s
x ∈ Ki, we denote the angle between two vectors p̄s

i − p̄s
c

and p̄s
x − p̄s

c as αix. The position encoding ḡs
i of p̄i is de-

fined as follows:

ḡs
i = φ (∥p̄s

i − p̄s
c∥2) + max

x∈Ki

{ϕ (αix)}, (11)

where φ and ϕ are two MLPs, and each MLP consists of a
linear layer and one ReLU nonlinearity function.

Cross-Attention. Let (l)F̄s be the intermediate represen-
tation for P̄ at layer l and let (0)F̄s

={ḡs
i+f̄s

i }
N̄s
i=1. We use

a multi-attention layer consisting of four attention heads to
update the (l)F̄s via

Ss=(l)W 1
(l)F̄s

+(l)b1,K
t=(l)W 2

(l)F̄ t
+(l)b2,

V x=(l)W 3
(l)F̄ t

+(l)b3,A=softmax

(
Ss⊤Kt

√
b

)
,

(l+1)F̄s
=(l)F̄s

+(l)h (AV x) .

(12)

Here, (l)h (·) is a three-layer fully connected network con-
sisting of a linear layer, instance normalization, and a
LeakyReLU activation. The same attention module is also
simultaneously performed for all points in point cloud P̄t.
The final outputs of attention module are F̄s for P̄s and F̄ t

for P̄t. The latent features F̄s have the knowledge of F̄ t

and vice versa.

Overlap Score. After computing F̄s and F̄ t, a network
acts on them to extract overlap scores Ōs = {ōs

i ∈
[0, 1]}N̄i=1 and Ōt = {ōt

j ∈ [0, 1]}M̄j=1 ∈ [0, 1] for P̄s and
P̄t, respectively, to identify the overlapping regions [19].
The overlap scores and features are sent to the decoder,
which outputs the point-wise feature descriptor Fs∈RNs×d

and F t∈RNt×d and overlap scores Os={osi}∈R
Ns
+ and

Ot = {otj}∈R
Nt
+ . d is the dimension of features.

A.3. Optimization

Now, we introduce how to address the optimization ob-
jective presented in Eq. (6) of the main paper:

min
γ

∑
i,j

γij∥pi − µj∥22,

s.t.,
∑
i

γij=Nπj ,
∑
j

γij=1,γij ∈ [0, 1].
(13)

The constraint
∑

j γij=1 is imposed based on the property
of probability that the sum of all probabilities for all pos-
sible events is equal to one. The constraint

∑
i γij=Nπj

represents the mixture weights’ constraints.
Let Γ = γ

N with elements defined as Γij =
γij

N . By
replacing the variable γ with Γ in Eq. (13), the joint objec-
tive can be formulated as an optimal transport (OT) prob-
lem [37] as

min
Γ

⟨Γ,D⟩ , s.t. Γ⊤1N = π,Γ1L =
1

N
1N . (14)

While the minimization of Eq. (14) can be solved in poly-
nomial time as a linear program, it becomes challenging
when dealing with millions of data points and thousands
of classes as traditional algorithms do not scale well [11].
To overcome this limitation, we utilize an efficient version
of the Sinkhorn-Knopp algorithm [11]. This requires the
following regularization term:

min
Γ

⟨Γ,D⟩ − ϵH (Γ) ,

s.t. Γ⊤1N = π, Γ1L =
1

N
1N ,

(15)

where H (Γ) = ⟨Γ, logΓ− 1⟩ represents the entropy of
Γ, and ϵ > 0 is a regularization parameter. When ϵ is
very large, optimizing Eq. (15) is equivalent to optimizing
Eq. (14), but even for moderate values of ϵ, the objective
function tends to have approximately the same optimal so-
lution [11]. Choosing the appropriate value of ϵ involves a
trade-off between convergence speed and proximity to the
original transport problem [11]. In our scenario, a fixed
value of ϵ is suitable since our focus is on obtaining the
final clustering and representation learning outcomes rather
than solving the transport problem exactly. The solution to

Eq. (15) can be expressed as a normalized exponential ma-
trix, as stated in [11],

Γ = diag (µ) exp
(
D
/
ϵ
)

diag (ν) , (16)

where µ = (µ1, µ2, · · · , µN) and ν = (ν1, ν2, · · · , νL)
are renormalization vectors in RN and RL. Iterating
the updates via µi =

[
exp

(
D
/
ϵ
)
ν
]−1

i
and νj =[

exp
(
D
/
ϵ
)⊤

µ
]−1

j
with initial values µ = 1

N 1N and

ν = π, respectively, yields the vectors µ and ν. Although
any distribution can be used for the initialization of µ and
ν, setting them as the constraints results in faster conver-
gence [11]. In our experiments, we used 20 iterations as it
worked well in practice. After solving Eq. (16), we obtain
the probability matrix γ as

γ = N · Γ. (17)

Eqs. (8), (4), and (5) can be solved in a similar way.

A.4. Metrics

Following Predator [19] and CoFiNet [52], we use three
metrics, Registration Recall (RR), Relative Rotation Error
(RRE), and Relative Translation Error (RTE), to evalu-
ate the performance of the proposed registration algorithm.
RRE and RTE are respectively defined as

RRE = arccos

(
Tr
(
R⊤R⋆

)
− 1

2

)
,

RTE = ∥t− t⋆∥2,
(18)

where R⋆ and t⋆ denote the ground-truth rotation matrix
and the translation vector, respectively. Registration Re-
call (RR), the fraction of point cloud pairs whose root mean
square error (RMSE) of transformation is smaller than a cer-
tain threshold (i.e., RMSE < 0.2m). Specifically, we de-
note the set of ground truth correspondences as H and the
estimated transformation T , their root mean square error are
calculated as:

RMSE =

√√√√ 1

|H|
∑

(p,q)∈H

∥T (p)− q∥22. (19)

Follow [19], Chamfer distance (CD) is used to measure the
registration quality on ModelNet40. We use the modified
Chamfer distance metric:

CD (P,Q)=
1

|P|
∑
p∈P

min
q∈Q

∥T (p)−q∥

+
1

|Q|
∑
q∈Q

min
p∈P

∥T (p)−q∥,
(20)

where P and Q are input source and target point clouds.

Source Target

Figure 6. Coloring the points using learned GMM labels.

A.5. More Results

Visualize the Gaussian mixtures. Fig. 6 shows the visual
results by coloring the points using GMM labels. We use
different colors to differentiate clusters.

KITTI results. Table 7 shows the generalization results
from 3DMatch to KITTI. UDPReg outperforms baselines,
showing its robustness and generalization.

Table 7. Results of generalization from 3DMatch to KITTI.

Method RTE(↑) RRE(↑) Success(↑) Time (↓)

Predator 16.5 1.38 46.13 0.44
SGP 13.8 0.49 62.22 0.12
UDPReg(Ours) 8.81 0.41 64.59 0.26

Complexity Analysis. O(N×L), L<N complexity for clus-
tering and O(N2) for attention represents the memory bot-
tleneck of UDPReg. N,L are point and cluster numbers,
respectively. Table 7 reports the inference time on a Tesla
V100 GPU (32G) and two Intel(R) 6226 CPUs.

