A. Results overview

In this section, we provide an overview table for the speed-
up we achieved for pixel-space and latent-space diffusion
models (see Tab. 3). We also provide extra samples from the
text-guided image generation model as well as comparison
with DDIM [38], DPM [17] and DPM++ [18] solvers in
Fig. 13 and Fig. 14. We provide more experimental details
on pixel-space distillation in Appendix B and latent-space
distillation in Appendix C.

B. Pixel-space distillation
B.1. Teacher model

The model architecture we use is a U-Net model similar to
the ones used in [6]. The model is parameterized to predict v
as discussed in [33]. We use the same training setting as [0].

B.2. Stage-one distillation

The model architecture we use is a U-Net model similar
to the ones used in [6]. We use the same number of chan-
nels and attention as used in [6] for both ImageNet 64x64
and CIFAR-10. As mentioned in Section 3, we also make
the model take w as input. Specifically, we apply Fourier
embedding to w before combining with the model backbone.
The way we incorporate w is the same as how time-step is
incorporated to the model as used in [10, 33]. We parameter-
ize the model to predict v as discussed in [33]. We train the
distilled model using Algorithm 1. We train the model using
SNR loss [10,33]. For ImageNet 64x64, we use learning
rate 3e — 4, with EMA decay 0.9999; for CIFAR-10, we use
learning rate 1e — 3, with EMA decay 0.9999. We initialize
the student model with parameters from the teacher model
except for the parameters related to w-embedding.

Algorithm 1 Stage-one distillation

Require: Trained classifier-free guidance teacher model
[Xc.0,%6]

Require: Data set D

Require: Loss weight function w()
while not converged do

x~D > Sample data
t ~UJ[0,1] > Sample time
w ~ U[wmim wmax] > Sample guidance
e~ N(0,1) > Sample noise
zt = X + o€ > Add noise to data
= loglaj/o7] > log-SNR
Xo 6 (2t) = ( +w)Xc,0(2:) — wXe(z:) > Compute
target
L, = wMII%5 (2) — %y (2, w)[3 o Loss
m < m — YV, Ly, > Optimization
end while

B.3. Stage-two distillation for deterministic sampler

We use the same model architectures as the ones used in
Stage-one (see Appendix B.2). We train the distilled model
using Algorithm 2. We first use the student model from
Stage-one as the teacher model. We start from 1024 DDIM
sampling steps and progressively distill the student model
from Stage-one to a one step model. We train the student
model for 50,000 parameter updates, except for sampling
step equals to one or two where we train the model for
100,000 parameter updates, before the number of sampling
step is halved and the student model becomes the new teacher
model. At each sampling step, we initialize the student
model with the parameters from the teacher model. We train
the model using SNR truncation loss [10, 33]. For each
step, we linearly anneal the learning rate from le — 4 to 0
during each parameter update. We do not use EMA decay
for training. Our training setting follows the setting in [33]
closely.

Algorithm 2 Stage-two distillation for deterministic sampler

Require: Trained teacher model X,,(z¢, w)
Require: Data set D
Require: Loss weight function w()
Require: Student sampling steps N
for K iterations do
M2 <M
while not converged do
x~D
t=1i/N, i~ Cat[l,2,...,N]
w ~ U[Wmin, Wmnax] > Sample guidance
e~ N(0,I)
Z; = X + 0€
# 2 steps of DDIM with teacher
t'=t—05/N, t'=t—1/N
2y = ayXp(2e, W) + (20 — Xy (2, w))

zy = aurXn (2, w) + Ut,” (217 — awxp(zi), w))

> Init student from teacher

XY = % > Teacher X target
— log[a? /o]

Lm — WOIR — Ko (1, 0)[3

M < M2 — ’YV’I]Z L772
end while
77— N2 > Student becomes next teacher
N« N/2 > Halve number of sampling steps

end for

B.4. Stage-two distillation for stochastic sampling

We train the distilled model using Algorithm 3. We use
the same model architecture and training setting as Stage-two
distillation described in Appendix B.3 for both ImageNet
64x64 and CIFAR-10: The main difference here is that our
distillation target corresponds to taking a sampling step that



Space Task Dataset Metric ~ Student diffusion step  Comparable teacher diffusion step ~ Speed-up
class-conditional generation CIFAR-10 FID 4 1024 DDIM x 2 x512
Pixel-space class-conditional generation CIFAR-10 IS 4 1024 DDIM x 2 x512
class-conditional generation ImageNet 64 x 64 FID 8 1024 DDIM x 2 x256
class-conditional generation ImageNet 64 x 64 1S 8 1024 DDIM x2 %256
class-conditional generation ~ ImageNet 256 %256 FID 2 16 DDIM x2 x 16
Latent-space class-conditional generation =~ ImageNet 256256  Recall 2 16 DDIM x2 x16

text-guided generation LAION-5B 512x 512 FID 2 16 DDIM / 8 DPM++ x2 x16/ %8

text-guided generation LAION-5B 512x 512 CLIP 4 8 DDIM / 4 DPM++ x2 x8/ x4

Table 3. Speed-up overview for pixel-space diffusion and latent-space diffusion. We note that the original model (without distillation)
requires evaluating both the unconditional and the conditional diffusion model at each denoising step. Our model, on the other hand, only
requires evaluating one diffusion model at each denoising step. This is because in our stage-one distillation, we distill the output of the
unconditional and conditional models into the output of one model. Thus our method further decreases either the peak memory or sampling

time by a half compared to the original model.

is twice as large as for the deterministic sampler. We provide
visualization for samples with varying guidance strengths w
in Fig. 15.

Algorithm 3 Stage-two distillation for stochastic sampler

Require: Trained teacher model X,,(z;, w)
Require: Data set D
Require: Loss weight function w()
Require: Student sampling steps IV
for K iterations do
M2 <M
while not converged do
x~D
t=1i/N, i~ Cat[l,2,...,N]
w ~ UlWmin, Wiax) > Sample guidance
e~ N(0,1)
Z; = X + 04€
ift > 1/N then
# 2 steps of DDIM with teacher
t'=t—1/N, t'=t—2/N
z}) = apXp(zy, W) + %’(zt — Xy (24, w))
Xy (2, w) + F (2

Tyt

> Init student from teacher

Z’g/]/ =
s w

Q' Xy (zt/ ) w))

z;’},f(atu/at)zt

X" = — > Teacher x target
Qyrr (O‘t// /o’t)at
else > Edge case
# 1 step of DDIM with teacher
t'=t—1/N
2} = apXp(ze, w) + %(zt — Xy (24, w))
gw = 2o —lov oz > Teacher X target
ay—(oy/o)o
end if

A = loga? /o7
Ly, = w(A) XY — X, (21, w) 13
M2 < M2 — YV, Ln,

end while
7 < 12 > Student becomes next teacher
N « N/2 > Halve number of sampling steps

end for

B.5. Baseline samples

We provide extra samples for the DDIM baseline in
Fig. 16 and Fig. 17.

B.6. Extra distillation results

We provide the FID and IS results for our method and
the baselines on ImageNet 64x64 and CIFAR-10 in Fig. 22b,
Fig. 22a and Tab. 4. We also visualize the FID and IS trade-
off curves for both datasets in Fig. 18 and Fig. 19, where
we select guidance strength w = {0,0.3,1,2,4} for Ima-
geNet 64x64 and w = {0,0.1,0.2,0.3,0.5,0.7,1,2,4} for
CIFAR-10.

B.7. Style transfer

We focus on ImageNet 64x64 for this experiment. As
discussed in [41], one can perform style-transfer between
domain A and B by encoding (performing reverse DDIM)
an image using a diffusion model train on domain A and
then decoding using DDIM with a diffusion model trained
on domain B. We train the model using Algorithm 4. We
use the same w-conditioned model architecture and training
setting as discussed in Appendix B.3.
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Figure 13. Text-guided image generation on LAION-5B (512 512). We compare our distilled model with the original model sampled with
DDIM [38] and DPM~++- [18]. We observe that our model, when using only two steps, is able to generate more realistic and higher quality
images compared to the baselines using more steps. We note that both DDIM and DPM-Solver require evaluating both a conditional and an
unconditional diffusion model at each denoising step, while we distill the two models into one model at our stage-one distillation and only
require evaluating one model at each denoising step. Depending on the implementation, DDIM and DPM-Solver require either extra x2
peak memory or X2 sampling steps compared to our approach.
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Prompt: “A beautiful castle, matte painting.”

Figure 14. Text-guided image generation on LAION-5B (512x 512). We compare our distilled model with the original model sampled with
DDIM [38] and DPM++4- [18]. We observe that our model, when using only two steps, is able to generate more realistic and higher quality
images compared to the baselines using more steps. We note that both DDIM and DPM-Solver require evaluating both a conditional and an
unconditional diffusion model at each denoising step, while we distill the two models into one model at our stage-one distillation and only
require evaluating one model at each denoising step. Depending on the implementation, DDIM and DPM-Solver require either extra x2
peak memory or X2 sampling steps compared to our approach.
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Figure 15. Class-conditional samples from our two-step (stochastic) approach on ImageNet 64x64. By varying the guidance weight w,
our distilled model is able to trade-off between sample diversity and quality, while achieving visually pleasant results using as few as one

sampling step.
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Figure 16. ImageNet 64x64 class-conditional generation using DDIM (baseline) 8 x2 sampling steps. We observe clear artifacts when

w = 0.
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Figure 17. ImageNet 64x64 class-conditional generation using DDIM (baseline) 162 sampling steps.



ImageNet 64x64 CIFAR-10
Guidance w Model FID (}) IS FID (}) 1S ()
w=0.0 Ours 1-step (D/S) 22.74/2691  25.51/23.55 8.34/10.65 8.63/8.42
Ours 2-step (D/S) 9.75/10.67 36.69/37.12 4.48/4.81 9.23/9.30
Ours 4-step (D/S) 4.14/3.91 46.64 /48.92 3.18/3.28 9.50/9.60
Ours 8-step (D/S) 2.79/2.44 50.72/55.03 2.86/3.11 9.68/9.74
Ours 16-step (D/S) 2.44/2.10 52.53/57.81 2.78/3.12 9.67/9.76
Single-w 1-step 19.61 24.00 6.64 8.88
Single-w 4-step 4.79 38.77 3.14 9.47
Single-w 8-step 3.39 42.13 2.86 9.67
Single-w 16-step 2.97 43.63 2.75 9.65
DDIM 16x2-step [38] 7.68 37.60 10.11 8.81
DDIM 32x2-step [38] 5.03 40.93 6.67 9.17
DDIM 64 x2-step [38] 3.74 43.16 4.64 9.32
Target (DDIM 1024 x2-step) 2.92 44.81 2.73 9.66
w=0.3 Ours 1-step (D/S) 14.85/18.48  37.09/33.30 7.3479.38 8.90/8.67
Ours 2-step (D/S) 5.052/5.81 54.44154.37 4.23/4.74 9.45/9.45
Ours 4-step (D/S) 2.17/2.24 69.64/73.73 3.58/3.95 9.73/9.77
Ours 8-step (D/S) 2.05/2.31 76.01/83.00 3.54/3.96 9.87/9.90
Ours 16-step (D/S) 2.20/2.56 79.47 1 87.50 3.57/4.17 9.89/9.97
Single-w 1-step 11.70 36.95 5.98 9.13
Single-w 4-step 2.34 62.08 3.58 9.75
Single-w 8-step 2.32 68.76 3.57 9.85
Single-w 16-step 2.56 70.97 3.61 9.88
DDIM 16 x2-step 5.33 60.83 10.83 8.96
DDIM 32 x2-step 3.45 68.03 7.47 9.33
DDIM 64 x2-step 2.80 72.55 5.52 9.51
Target (DDIM 1024 x2-step) 2.36 74.83 3.65 9.83
w=1.0 Ours 1-step (D/S) 7.5478.92 75.19/67.80 8.62/10.27 9.21/8.97
Ours 2-step (D/S) 5.77/5.83 109.97/108.38  6.88/7.52 9.64/9.55
Ours 4-step (D/S) 7.95/8.51 128.98/135.36  7.39/7.64 9.86/9.87
Ours 8-step (D/S) 9.33/10.56  136.47/147.39  7.81/7.85 9.9/10.05
Ours 16-step (D/S) 9.99/11.63 139.11/153.17 7.97/834  10.00/10.05
Single-w 1-step 6.64 74.41 8.18 9.32
Single-w 4-step 8.23 118.52 7.66 9.88
Single-w 8-step 9.69 125.20 8.09 9.89
Single-w 16-step 10.34 127.70 8.30 9.95
DDIM 16 x2-step 9.53 112.75 14.81 8.98
DDIM 32 x2-step 9.26 126.22 11.44 9.36
DDIM 64 x2-step 9.53 133.17 9.79 9.64
Target (DDIM 1024 x 2-step) 9.84 139.50 7.80 9.96
w = 2.0 Ours 1-step (D/S) 10.71/10.55 118.55/108.37 13.23/14.33  9.23/9.02
Ours 2-step (D/S) 14.08/14.18  160.04/161.43  12.58/12.57 9.51/9.48
Ours 4-step (D/S) 17.61/18.23 178.29/184.45 13.83/1324  9.70/9.77
Ours 8-step (D/S) 18.80/20.25 181.53/193.49 14.41/13.67 9.77/9.87
Ours 16-step (D/S) 19.25/21.11 183.17/197.71 14.80/1428  9.79/9.84
Single-w 1-step 11.12 120.74 13.31 9.23
Single-w 4-step 18.14 172.74 14.04 9.70
Single-w 8-step 19.24 176.74 14.67 9.77
Single-w 16-step 19.81 177.69 15.04 9.79
DDIM 16 x2-step 15.92 157.67 20.25 8.97
DDIM 32 x2-step 16.85 175.72 17.27 9.29
DDIM 64 x 2-step 17.53 182.11 15.66 9.48
Target (DDIM 1024-step) 17.97 190.56 13.60 9.81
w=4.0 Ours 1-step (D/S) 18.72/17.85 157.46/148.97 23.20/23.79  8.88/8.70
Ours 2-step (D/S) 23.74/24.34 196.05/200.11 23.41/2275  9.16/9.11
Ours 4-step (D/S) 26.45/27.33 207.45/216.56 25.11/23.62  9.23/9.33
Ours 8-step (D/S) 26.62/27.84 203.47/219.89 25.94/2398  9.26/9.55
Ours 16-step (D/S) 26.53/27.69 204.13/218.70 26.01/24.40  9.33/9.50
Single-w 1-step 19.857 170.69 23.17 8.93
Single-w 4-step 27.75 219.64 24.45 9.32
Single-w 8-step 27.67 218.08 24.83 9.38
Single-w 16-step 27.40 216.52 25.11 9.37
DDIM 16 x2-step 21.56 195.17 27.99 8.71
DDIM 32 x2-step 23.03 213.23 25.07 9.07
DDIM 64 x 2-step 23.64 217.88 23.41 9.17
Target (DDIM 1024 x2-step) 23.94 224.74 21.28 9.54

Table 4. Distillation results on ImageNet 64x64 and CIFAR-10 (w = 0 refers to non-guided models). For our method, D and S stand
for deterministic and stochastic sampler respectively. We observe that training the model conditioned on an guidance interval w € [0, 4]
performs comparably with training a model on a fixed w (see Single-w). Our approach significantly outperforms DDIM when using fewer
steps, and is able to match the teacher performance using as few as 8 to 16 steps. We also note that DDIM and DDPM evaluates both an
unconditional and a conditional diffusion model at each denoising step, giving rise to the x2 overhead either for peak memory or sampling
steps.
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Figure 18. FID and IS score trade-off on ImageNet 64x64. We plot the results using guidance strength w = {0,0.3,1,2,4}. For the
1-step plot, the curves of DDIM and DDPM are too far away to be visualized.
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Figure 19. FID and IS score trade-off on CIFAR-10. We plot the results using guidance strength w = {0,0.1,0.2,0.3,0.5,0.7,1,2, 4}.
For the 1-step and 2-step plots, the curves of DDIM and DDPM are too far away to be visualized. For the 4—step plot, the curve of
DDIM is too far away to be visualized.
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Figure 20. Style transfer on ImageNet 64x64 for pixel-space models (orange to bell pepper). We use a distilled 16-step encoder and
decoder. We fix the encoder guidance strength to be 0 and vary the decoder guidance strength from O to 4. As we increase w, we notice a
trade-off between sample diversity and sharpness.
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Figure 21. Style transfer on ImageNet 64x64 (orange to acorn squash). We use a distilled 16-step encoder and decoder. We fix the

encoder guidance strength to be 0 and vary the decoder guidance strength from O to 4. As we increase the guidance strength w, we notice a
trade-off between sample diversity and sharpness.
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Figure 22. CIFAR-10 and ImageNet sample quality evaluated by FID and IS scores for pixel-space diffusion models. We follow the setting
of [33] for our evaluation. We note that, the DDPM and DDIM baseline require evaluating both an unconditional and a conditional diffusion
model at each denoising step for classifier-free guidance, giving rise to either an extra X2 overhead for peak memory or an extra X2 sampling
steps than the “Sampling steps” value shown in the plot. Our distilled model significantly outperform the DDPM and DDIM baselines, and

is able to match the performance of the teacher using as few as 4 to 16 steps. By varying w, a single distilled model is able to capture the
trade-off between sample diversity and quality.



Algorithm 4 Encoder distillation

Require: Trained teacher model X,,(z¢, w)
Require: Data set D
Require: Loss weight function w()
Require: Student sampling steps N

for K iterations do

Ny N > Init student from teacher

while not converged do
x~D
t=1i/N, i~ Cat[0,1,...,N — 1]

w ~ U[Wmin, Wmax] > Sample guidance

e~ N(0,I)

Z; = X + 0€

# 2 steps of reversed DDIM with
teacher

t'=t+4+05/N, t'= t+ 1/N

zy) = Xy (2e, w) + T (20 — arXp(2e, w))

2y = Xy (2, w) + 22 (2] — ap Xy (2, w))

U t

cw _ % > Teacher X target
Quyrr Ty11 /Ot t
= log[a /Ut]

an = w(At)Hx — X, (24, w) |13
M2 < M2 — YV, Ln,

end while

7 < 72 > Student becomes next teacher

N «+ N/2 > Halve number of sampling steps
end for

Algorithm 5 Two-student progressive distillation

Require: Trained classifier-free guidance teacher model
[Xc.0,Xo]

Require: Data set D

Require: Loss weight function w()

Require: Student sampling steps N
for K iterations do

<+ 0 > Init student from teacher
while not converged do

x~D

t=1i/N, i~ Cat[l,2,...,N]

w ~ U[Wnin, Wiax) > Sample guidance

e~ N(0,I)

Zy = QX + O4€

Xy (z¢) = (1 + w)ke 0(z¢) — wke(z¢) >

Compute target
# 2 steps of DDIM with teacher
' =t—05/N, t'=t—1/N
2y = apXy (2) + 25 (20 — auXy (21))

Zgjt” = th//)A(cyg (Z}f/]) + (;tt/l/ (Z?/} — Oét/)A(cﬂ (Z}f/)))
XY = % > Conditional teacher X
target ‘ ’
zi) = oawXe(zyl) + T (2} — avRe(zy)))
XY = M > Unconditional teacher x
7 (O't///o't)()ét
target
~ logla?/0] )
Ln = w(At)(le;” — Xem(ze, w5 + [[X°

X (2e,w)|3)
n<n—79Vyly

end while
0<n > Student becomes next teacher
N« N/2 > Halve number of sampling steps

end for




Guidance w  Number of step FID (|) IS (1)

w=0.0 1x2 212.20  3.66
16x2 42.02 7.95
64x2 35.37 8.47
128x2 29.74 8.87
2562 20.14 9.50
w=0.3 1x2 213.07  3.62
16x2 48.74 7.70
128x2 34.28 8.57
2562 24.54 9.21
w=1.0 1x2 214.88 3.54
16x2 64.92 7.21
64x2 48.54 7.62
128x2 42.56 8.00
2562 32.20 8.81
w=2.0 1x2 217.37 348
16x2 87.19 6.50
64x2 57.15 722
1282 50.30 7.53
256x2 39.76 8.26
w=4.0 1x2 220.11 345
16x2 115.57 6.16
64x2 71.45 6.78
128x2 61.75 7.02
2562 49.21 7.69

Table 5. Distillation results on CIFAR-10 using the naive approach
mentioned in Appendix B.8. Note that the naive approach still
requires evaluating both a conditional and an unconditional model
at each denoising step, and thus requires X2 more steps or peak
memory than our method. From the evaluated FID/IS scores, we
observe that the naive distillation approach is not able to achieve
strong performance.



B.8. Naive distillation approach

A natural approach to progressively distill [33] a classifier-
free guided model is to use a distilled student model that fol-
lows the same structure as the teacher—that is with a jointly
trained distilled conditional and unconditional diffusion com-
ponent. Denote the pre-trained teacher model [X. g, Xg] and
the student model [X. ,,, X,,|, we provide the training algo-
rithm in Algorithm 5. To sample from the trained model, we
can use DDIM deterministic sampler [38] or the proposed
stochastic sampler. We follow the training setting in Ap-
pendix B.3, use a w-conditioned model and train the model
to condition on the guidance strength [0, 4]. We observe that
the model distilled with Algorithm 5 is not able to generate
reasonable samples when the number of sampling is small.
We provide the generated samples on CIFAR-10 with DDIM
sampler in Fig. 23, and the FID/IS scores in Tab. 5.
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Figure 23. Samples using the distillation algorithm mentioned
in Appendix B.8. The model is trained with guidance strength
w € [0,4] on CIFAR-10. The samples are generated with DDIM
(deterministic) sampler at w = 0. We observe clear artifacts when
the number of sampling step is small.

C. Latent-space distillation
C.1. Class-conditional generation
C.1.1 Training details

In this experiment, we consider class-conditional generation
on ImageNet 256x256. We first fine-tune the original e-
prediction model to a v-prediction model, and then start from
the DDIM teacher model with 512 sampling steps, where we
use the output as the target to train our distilled model. For

stage-one, we train the model for 2000 gradient updates with
constant loss [10,33]. For stage-two, we train the model with
2000 gradient updates except when the sampling size equals
to 1,2, or 4, where we train for 20000 gradient updates. We
train the second stage model with SNR-trunction loss [10,33].
For both stages, we train with extra 500 learning rate warm-
up steps, where we linearly increase the learning rate from
zero to the target learning rate. We use a batch size of 2048
and uniformly sample the guidance strength w € [wy,in =
0, Wmae = 14] during training.

Additional results We provide quantitative results evalu-
ated by precision and recall in Fig. 25. These results confirm
a significant performance boost of our method in the small-
step regime, especially for 1-4 sampling steps. Our distilled
latent diffusion model for 2- and 4-step sampling nearly
matches DDIM performance at 32 steps in terms of preci-
sion and significantly outperforms it in terms of recall for low
numbers of steps. For more qualitative results, see Fig. 25,
where we depict random samples for the 1- and 2-step model
and contrast them to DDIM sampling.

C.2. Text-guided image generation
C.2.1 Training details

We consider the LAION-5B datasets with resolution
256256 and 512 x 512 in this experiment.

LAION-5B 256 <256 Similar to Appendix C.1, we first
fine-tune the original e-prediction model to a v-prediction
model. We start from the DDIM teacher model with 512
sampling steps, and use the output as the target to train our
distilled model. For stage-one, we train the model for 2000-
5000 gradient updates with constant loss [10,33]. For stage-
two, we train the model with 2000-5000 gradient updates
except when the sampling size equals to 1,2, or 4, where
we train for 10000-50000 gradient updates. We train the
second stage model with SNR-trunction loss [10,33]. For
both stages, we train with extra 100-1000 learning rate warm-
up steps, where we linearly increase the learning rate from
zero to the target learning rate. We use a batch size of 1024
and uniformly sample the guidance strength w € [Wnin =
2, Wynar = 14] during training.

Fig. 26 provides a convergence analysis of the different
training setting described above. We observe that our method
approaches DDIM sampling of the base model after a few
thousand training iterations and outperforms it quickly in the
1- and 2-step regime. However, for maximum performance,
longer training is required.

LAION-5B 512x512 Similarly, we first fine-tune the orig-
inal e-prediction model to a v-prediction model. We start
from the DDIM teacher model with 512 sampling steps, and
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Figure 24. Random 256 x 256 class-conditional samples from our distilled model and from the DDIM teacher for 1 and 2 denoising steps for

w = 3.0.

use the output as the target to train our distilled model. For
stage-one, we train the model for 2000-5000 gradient up-
dates with constant loss [10, 33]. For stage-two, we train
the model with 2000-5000 gradient updates except when
the sampling step equals to 1,2, or 4, where we train for
10000-50000 gradient updates. We train the second-stage
model with SNR-trunction loss [10,33]. For both stages, we
train with extra 1000 learning rate warm-up steps, where
we linearly increase the learning rate from zero to the target
learning rate. We use a batch size of 512 and uniformly

sample the guidance strength w € [Wynin = 2, Winae = 14]
during training.

Additional results Besides DDIM, we also compare our
method here with DPM-++-Solver [16, 18], a state-of-the-art
sampler that requires no additional training and has achieved
good results for > 10 sampling steps for latent diffusion
models. Unlike our distilled model, this method, similar to
DDIM, must use classifier-free guidance to achieve good
results. This doubles the number of U-Net evaluations com-
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Figure 25. Precision and recall [13] for class-conditional image
generation on ImageNet (256 x 256) with distilled latent diffusion.
The results are evaluated on 5000 samples. Our distilled latent
diffusion model for 2- and 4-step sampling nearly matches DDIM
performance at 322 steps in terms of precision, and strictly out-
performs it in terms of recall.
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Figure 26. FID and Inception Score for text-guided image gener-
ation on LAION (256 x 256) with distilled latent diffusion. The
results are evaluated on 5000 captions from COCO2017. We ob-
serve that our distillation method approaches DDIM sampling after

only a few thousand training steps, see Appendix C.2.
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Figure 27. FID and CLIP ViT-g/14 score for text-to-image genera-
tion at 512 x 512 px using the distilled Stable Diffusion model. The
results are evaluated on 5000 captions from the COCO2017 [14]
validation set. Our distilled model outperforms the state-of-the-
art accelerated sampler DPM-Solver(DPM-++) [16, 18] in the 2-
and 4- step regime. We believe the difference in CLIP scores for
> 10-step sampling can be closed by longer training. We stress
that DPM-Solver, as DDIM, uses classifier-free guidance during
sampling, which requires evaluating both an unconditional and a
conditional diffusion model at each denoising step, giving rise to
an extra X2 overhead compared to our method.

Setting vs. DDIM (FID) vs. DPM-++ (FID)
2-step, w = 2.0 +89.8% +69.4%
4-step, w = 2.0 +68.9% +32.5%
2-step, w = 8.0 +89.5% +73.7%
4-step, w = 8.0 +42.6% +21.6%

Table 6. Relative performance of our distilled 512 x 512 LAION
model compared to DDIM [38] and DPM++ [18] sampling of the
base model. Note that DDIM and DPM-Solver use 2x more steps
than the one listed under “Setting”, as they rely on classifier-free
guidance instead of w-conditioning. This requires DDIM and DPM-
Solver to evaluate both an unconditional and a conditional diffusion
model at each denoising step, giving rise to the X2 overhead.

Setting vs. DDIM (CLIP) vs. DPM (CLIP)

2-step, w = 2.0 +550% +27.9%
4-step, w = 2.0 +19.2% +0.1%
2-step, w = 8.0 +348% +47.5%
4-step, w = 8.0 +8.6% +0.6%

Table 7. Relative performance of our distilled 512 x 512 LAION
model compared to DDIM [38] and DPM-Solver (DPM++) [ 16,

] sampling of the base model. Note that DDIM and DPM use
2x more steps than the one listed under “Setting”, as they rely on
classifier-free guidance instead of w-conditioning. This requires
DDIM and DPM to evaluate both an unconditional and a condi-
tional diffusion model at each denoising step, giving rise to the X2
overhead. We use CLIP ViT-g/14 for evaluation [7,25].

pared to our w-conditional approach.

We provide a qualitative comparison of these sampling
methods in Fig. 28, where we clearly see the benefits of our
distillation approach for low numbers of sampling steps: our
method produces sharper and more coherent results than the
training-free samplers. This behavior is reflected by the quan-
titative FID and CLIP analysis in Fig. 27 and Tab. 6, Tab. 7.
While the speed-up here is not quite as significant as in
pixel-space, our method still achieves very good results with
2 or 4 sampling steps. Our approach further reduces the
maximum memory or denoising step by a half compared to
existing methods due to w-conditioning (since here we no
longer need to evaluate both the unconditional model and
conditional model for classifier-free guidance, we only need
one distilled w-conditional model). We hope that our work
will lead to progress in real-time applications of general
high-resolution text-to-image systems.

We also provide human evaluation results by leveraging
Amazon Mechanical Turk. We generate images using text
prompts from [45]. We compare our distilled model sam-
pled using 2 or 4 denoising steps with DDIM and DPM++
solver sampled using 2x?2 or 4x2 denoising steps. For each
setting, we generate 100 HITs each with 17 pair-wise com-
parisons between samples generated with our approach and
the baseline. In each of the question, the user is shown the
text prompt used to generate the image and asked to select
the image that looks better to them. We provide a snapshot
of our user interface in Fig. 29. We provide the results in
Tab. 9. Although we observe noisy answers (for instance
some user would prefer the right image to the left image in
Fig. 29c), our distilled model still consistently outperforms
the baselines in all the settings we considered in Tab. 9. To
get higher-quality user feedback and reduce the noise in the
answers, in the future work, we will perform a new human
evaluation with a larger sample size and extra constraints
to ensure the quality of the response. We will also build a
framework to automatically ignore HITs with random selec-
tions.



(e) 4x2 denoising steps, DPM

(f) 4x2 denoising steps, DDIM

Figure 28. Random 512512 text-guided samples from our distilled Stable Diffusion model compared to the DDIM teacher and DPM-solver

for 2 and 4 denoising steps for w = 11.5.

C.3. Text-guided image-to-image translation
C.3.1 Training details

We use the model trained for text-guided image generation.
The training details can be found in Appendix C.2.

C.3.2 Extra analysis

We provide more analysis on the trade-off between sample
quality, controllability and efficiency in Fig. 30 and Fig. 31.
Similar to [20], we also observe a trade-off between realism,
controllability and faithfulness as we increase the initial
perturbed noise level: the more noise we add, the more
aligned the images are to the text prompt, but less faithful to
the input image (see Fig. 30 and Fig. 31).

C.4. Image inpainting
C.4.1 Training details

Similar to our previous experiments, we fine-tune the e-
prediction model to a v-prediction model, using the large

Setting Ours (FID |) DDIM (FID |)
2-step, w = 4.0 29.50 109.35
4-step, w = 4.0 24.90 26.89
2-step, w = 11.0 31.43 105.71
4-step, w = 11.0 24.36 27.22

Table 8. Quantitative inpainting results as evaluated by FID. We
evaluate on 2000 examples from COCO2017. Note that DDIM,
which is evaluated with classifier-free guidance, uses two times
more function evaluations than the one listed under “Setting”.

mask generation scheme suggested in LAMA [42] and train
on LAION-5B at 512 x 512 resolution. We start from the
DDIM teacher model with 512 sampling steps, and use the
output as the target to train our distilled model. For stage-one,
we train the model for 2000 gradient updates with constant
loss [10,33]. For stage-two, we train the model with 10000
gradient updates except when the sampling size equals to 1
or 2, where we train for 5000 gradient updates. We train the
second stage model with SNR-trunction loss [10,33]. For



Given the text prompt: *a glass of orange juice”, how would you imagine this image to look ike?
Cheose the image that looks more reasonble 10 you,
Your selection shouki based on how realistic and less blurry the image is, and whether it follows the text
prompt.

About this HIT:
« Ploase only participate in this HIT if you have normal color vision.
« 1 shouid take about 1 minute,
« You wil take part in an experiment involving visual perospsion. You'l se a text prompt and a series of pairs
of images. In each par, given the text prompt, the mmages are “fake” images generated USng a computer

program, Choose the image that looks more reasonble 10 you. Your selection should based on how
realistic and less blurry the image is, and whether the image follows the text promot.

Start! Left image Right image

(a) Instructions for the human evaluators on Amazon Mechani- (b) Images generated by our 4-step distillation model (left) and
cal Turk. images generated by the 4 X 2-step baseline (right).
Given the text prompt: *a penguin standing on a sidewalk”, how would you imagine this image to look like

Choose the image that lcoks more reasonble 10 you,
Your selection shouid based on how realistic and less blurry the image is, and whether it follows the te

Given the text prompt: *a mountain®, how would you imagine this image 1o look like?
Choose the image that looks more reasonble 10 you,
Your selection shoukd based on how realistic and less blurry the image is, and whether it follows the text

prompt

Lettimage Right image

Left image Right image

(c) Images generated by our 2-step distillation model (left) and (d) Images generated by the 2 x 2-step baseline (left) and images
images generated by the 2 x2-step baseline (right). generated by our 2-step distillation model (right).

Figure 29. A snapshot of the human evaluation interface we used on Amazon Mechanical Turk.

o

A fantasy landscape, trending on artstation (4-step)

Beautiful lake and trees, professional photography (3-step)

=11

Input A fantasy landscape, trending on artstation (2-step) Beautiful lake and trees, professional photography (2-step)

Figure 30. In this example, we study the trade-off between efficiency, realism, and controllability for guided image translation with
SDEdit [20]. We use a 4-step distilled text-guided image generation model trained on LAION-5B (512x512). The training detail is discussed
in Appendix C.2. Given an input image (guide), we consider perturbing the input image with different noise level, with 2 denoising step
corresponding to perturb the image with around 50% noise, and 4 denoising step corresponding to perturb the image with around 100%
noise according to the DDIM noise schedule. We observe that the more noise we perturb, the more aligned the images are with the text
prompt, but the less faithful they are to the input image.
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A fantasy landscape, trending on artstation (8-step)
—

A fantasy landscape, trending on artstation (7-step)

- — = i, |

Input A fantasy landscape, trending on artstation (5-step) Beautiful lake and trees, professional photography (5-step)

Figure 31. In this example, we study the trade-off between efficiency, realism, and controllability for guided image translation with
SDEdit [20]. We use a 8-step distilled text-guided image generation model trained on LAION-5B (512x512). The training detail is discussed
in Appendix C.2. Given an input image (guide), we consider perturbing the input image with different noise level, with 5 denoising step
corresponding to perturb the image with around 60% noise, and 8 denoising step corresponding to perturb the image with around 100%
noise according to the DDIM noise schedule. We observe that the more noise we perturb, the more aligned the images are with the text
prompt, but the less faithful they are to the input image.

'Ji ‘s e

(a) 2 denoising steps, ours (b) 2% 2 denoising steps, DDIM

Figure 32. Random 512512 inpainting samples from our distilled model and from the DDIM teacher for 2 denoising steps for w = 11.0.

both stages, we train with extra 1000 learning rate warm- Additional evaluation results A quantitative comparison
up steps, where we linearly increase the learning rate from with DDIM sampling at low sampling numbers of sam-
zero to the target learning rate. We use a batch size of 512 pling steps can be found in Tab. 8, additional samples are in
and uniformly sample the guidance strength w € [wyin = Fig. 32.

2, Wynar = 14] during training.



Ours Baseline Our method is better (1)

Distillation 2-step DDIM 2 x2-step 66.32%
Distillation 2-step DPM++ 2x2-step 68.97%
Distillation 2-step ~ DDIM 4x2-step 57.44%
Distillation 2-step  DPM++ 4 x2-step 59.88%
Distillation 4-step ~ DDIM 4x2-step 67.36%
Distillation 4-step DPM++ 4 x2-step 64.71%

Table 9. Human evaluation on text-guided image generation. Here
the model is trained on LAION-5B (512x512). We leverage Ama-
zon Mechanical Turk for human evaluation. We perform pairwise
comparison between our method and the baselines. We compare
our method using 2 or 4 denoising steps with DDIM [38] and
DPM++ [18] samplers using 2x2 or 4x2 denoising steps. We
use a guidance strength of 12.5 for all methods. For each setting,
we distribute 100 HITs each with 17 pairwise comparison ques-
tions. We show MTurk workers the text prompt as well as the two
generated images, and then ask them to select the one they think
is better. We provide a snapshot of the interface in Fig. 29. In the
table, we report the percentage that the MTurk workers think our
method is better than the baseline. Although, we observe noise in
the response (some user would prefer the right image to the left
image in Fig. 29c¢), our method still consistently outperform the
baselines in all settings. For the future work, we will incorporate
schemes to ignore invalid HITs with random answers. We will also
perform another human evaluation study with larger sample sizes
and more constraints to ensure high-quality responses.

D. Extra samples for pixel-space distillation

In this section, we provide extra samples for the pixel-
space distillation models. We generate samples using the
deterministic sampler (see Algorithm 2) and the stochastic
sampler (see Algorithm 3).
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Figure 33. Ours (deterministic in pixel-space) on CIFAR-10. Distilled 256 sampling steps.
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Figure 34. Ours (stochastic in pixel-space) on CIFAR-10. Distilled 256 sampling steps.
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Figure 35. Ours (deterministic in pixel-space) on CIFAR-10. Distilled 256 sampling steps. Class-conditioned samples.
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Figure 36. Ours (stochastic in pixel-space) on CIFAR-10. Distilled 256 sampling steps. Class-conditioned samples.
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Figure 37. Ours (deterministic in pixel-space) on CIFAR-10. Distilled 4 sampling steps.
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Figure 38. Ours (stochastic in pixel-space) on CIFAR-10. Distilled 4 sampling steps.
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Figure 39. Ours (deterministic in pixel-space) on CIFAR-10. Distilled 4 sampling steps. Class-conditioned samples.
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Figure 40. Ours (stochastic in pixel-space) on CIFAR-10. Distilled 4 sampling steps. Class-conditioned samples.
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Figure 41. Ours (deterministic in pixel-space) on CIFAR-10. Distilled 2 sampling steps.

.1 4 s
B WE- ~
Tiinmd =4
Ew W
hid =P
L EEN

(aw=20

b0 & L™ 12
HWE - A
Tl =
EEs VYR
hid M=)
~ B

bw=1

hll.!l

XN

Cw=2

(dw =4

Figure 42. Ours (stochastic in pixel-space) on CIFAR-10. Distilled 2 sampling steps.
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Figure 43. Ours (deterministic in pixel-space) on CIFAR-10. Distilled 2 sampling steps. Class-conditioned samples.
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Figure 44. Ours (stochastic in pixel-space) on CIFAR-10. Distilled 2 sampling steps. Class-conditioned samples.
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Figure 45. Ours (deterministic in pixel-space) on CIFAR-10. Distilled 1 sampling step.
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Figure 46. Ours (stochastic in pixel-space) on CIFAR-10. Distilled 1 sampling step.
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Figure 47. Ours (deterministic in pixel-space) on CIFAR-10. Distilled 1 sampling step. Class-conditioned samples.
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Figure 48. Ours (stochastic in pixel-space) on CIFAR-10. Distilled 1 sampling step. Class-conditioned samples.
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Figure 49. Ours (deterministic in pixel-space) on ImageNet 64x64. Distilled 256 sampling steps.
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Figure 50. Ours (stochastic in pixel-space) on ImageNet 64x64. Distilled 256 sampling steps.
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Figure 51. Ours (deterministic in pixel-space) on ImageNet 64x64. Distilled 256 sampling steps. Class-conditioned samples.
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Figure 52. Ours (stochastic in pixel-space) on ImageNet 64x64. Distilled 256 sampling steps. Class-conditioned samples.
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Figure 53. Ours (deterministic in pixel-space) on ImageNet 64x64. Distilled 8 sampling step.
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Figure 54. Ours (stochastic in pixel-space) on ImageNet 64x64. Distilled 8 sampling step.
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Figure 55. Ours (deterministic in pixel-space) on ImageNet 64x64. Distilled 8 sampling step. Class-conditioned samples.
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Figure 56. Ours (stochastic in pixel-space). Distilled 8 sampling step. Class-conditioned samples.
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Figure 57. Ours (deterministic in pixel-space) on ImageNet 64x64. Distilled 2 sampling steps.
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Figure 58. Ours (stochastic in pixel-space) on ImageNet 64x64. Distilled 2 sampling steps.

% K% (61D | &5
o

R S | Bl P D |
< N Hﬂlﬁﬁﬂ

wR PGP ﬂlﬂm&l N
ar R EECFEICIR  ENCTR G
TEEWEE PO EE  FITRRESES ﬂﬂﬂﬂ.ﬂ

(@w=0 byw=1 Cw=2 (dDw=4

Figure 59. Ours (deterministic in pixel-space) on ImageNet 64x64. Distilled 2 sampling steps. Class-conditioned samples.
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Figure 60. Ours (stochastic in pixel-space) on ImageNet 64x64. Distilled 2 sampling steps. Class-conditioned samples.
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Figure 61. Ours (deterministic in pixel-space) on ImageNet 64x64. Distilled 1 sampling step.
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Figure 62. Ours (stochastic in pixel-space) on ImageNet 64x64. Distilled 1 sampling step.
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Figure 63. Ours (deterministic in pixel-space) on ImageNet 64x64. Distilled 1 sampling step. Class-conditioned samples.
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Figure 64. Ours (stochastic in pixel-space) on ImageNet 64x64. Distilled 1 sampling step. Class-conditioned samples.
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