
A. Additional experiments

Out-of-distribution robustness

While in our model shift-invariance is guaranteed, it is merely a learned property in other models, and thus may only
be partially generalized to out-of-distribution images [2]. To evaluate this hypothesis, we measured robustness to fractional
translations on ImageNet-C [14], which contains common corruptions of ImageNet images in ascending severity levels. We
used fractional grid attack with a minimal translation of 1/7 a pixel i.e.

Tfrac,k=7 =

{(
m1

n1
,
m2

n2

)
| 1 ≤ m1,2 ≤ n1,2 ≤ 7

}
. (10)

The results are visualized in Figure 5. As our model’s robustness to translations is guaranteed, it has no accuracy reduction
caused by translations. In contrast, the other models’ vulnerability to translation attacks increases with the severity of the
corruption; ConvneXt-AFC relative accuracy degradation due to fractional translations increases from 5% to as much as 23%
in the highest corruption severity. This indicates that the generalization of learned shift-invariance is limited in comparison
to architectural shift-invariance.

Clean 1 2 3 4 5
Severity

30

40

50

60

70

80

Ac
cu

ra
cy

 /
Ad

ve
rs

ar
ia

l a
cc

ur
ac

y ConvNeXt-AFC
ConvNeXt-APS
ConvNeXt-Baseline

Clean 1 2 3 4 5
Severity

0

5

10

15

20
Ad

ve
rs

ar
ia

l a
cc

. d
eg

ra
da

tio
n

(%
) ConvNeXt-AFC

ConvNeXt-APS
ConvNeXt-Baseline

Figure 5. Adversarial accuracy with image corruptions. Top: ImageNet-C accuracy (solid) vs. adversarial fractional grid accuracy
(transparent). Bottom: Accuracy vs. adversarial accuracy difference (percentage). ConvNeXt-AFC (ours) ImageNet-C accuracy is not
affected by translations, while in ConvNeXt-APS and ConvNeXt-Basline the relative accuracy degradation as a result of translations
increases with the corruption severity.

B. Limitations

B.1. Accuracy

Although our model has improved robustness in comparison to the baseline model and other shift-invariance methods, it
has a lower accuracy on the original test set. This result makes sense since robustness often comes at the cost of accuracy.
Specifically, the property of perfect shift-invariance is architecturally forced in our model, in contrast to other CNNs where
it can be violated. This may seem as a reduction of the hypothesis set. However, in Table 1 of the paper we observe that
the highest drop in accuracy does not occur at the last modification, where the model becomes shift-invariant, but rather as
a result of modifying the Normalization Layer to be alias-free. Although the proposed alias-free normalization layer was
designed to remain similar to the original model LayerNorm, other alias-free normalization methods may exist and lead to
a higher accuracy than ours, without hurting robustness. Another drop in accuracy occurs as a result of replacing GeLU
in polynomial activation, which surprisingly does not happen in the regular setting (models without cyclic convolutions);
a polynomial activation in a cyclic setting leads to a reduction of 0.4% in accuracy (see Tab. 1 of the paper) while in a
non-cyclic setting it leads to a reduction of 0.1% only (see Table 4). It implies that additional hyper-parameter tuning might
help in the recovery of this accuracy drop. In addition, we note again that the modifications in our model effectively remove
non-linearities from the baseline model, and that ConvNeXt-AFC is roughly (up to the layer normalizations) a polynomial
of the input with a degree that is an exponent of the convnet’s depth. Thus, using a wider or deeper convnet might help in
closing the accuracy gap.

B.2. Runtime performance

Although the AFC model has only a small amount of additional parameters in the polynomial activation function, it has
a higher computation cost than the baseline (see Table 3). The main reason for that is that while the activation function in
the baseline model is a single pointwise operation, our activation requires upsampling and downsampling which are rather
expensive. This issue has been addressed in a previous study [17], where a similar scheme for partially alias-free activation
has been used. They combined all the required operations to a single CUDA kernel which (according to them) led to a speed-
up of at least x20 over native PyTorch implementation, and in total to x10 speed-up in training time. Our model training time
is only 5 times higher than the baseline training time, therefore it is reasonable to assume such efficient implementation may
significantly reduce the training time gap.

Model
Train time

[hours]
Eval time

[ms per sample]

ConvNeXt-Baseline [19] 84 1.39
ConvNeXt-APS [4] 93 1.56
ConvNeXt-AFC (ours) 418 9.16

Table 3. Training and evaluation performance. Train time was measured on Nvidia A6000 x 8 using the maximal possible batch-size
per model due to memory constraints. Evaluation time was measured on a single A6000 with batch-size 256.

B.3. Image translations

B.3.1 Circular translations

The guaranteed robustness in the AFC model is limited to circular shifts, similarly to previous work [4]. Applying this kind
of translation on a finite image causes edge artifacts and creates an unrealistic image (e.g., see Fig. 8). Although our model
has improved robustness even in translations of the frame with respect to the scene (see Fig. 4 of the paper) which may seem
as a more practical setting, information-loss makes guaranteed robustness impossible — for example, consider an image
in which a translation cause the classified object to get out of the frame. Although the certified robustness may seem not
applicable, circular shifts can actually be practically relevant. For example, shifting an object over a constant (i.e., uniform)
background will seem identical to a circular translation of the entire frame. This setting may be relevant in face recognition
tasks and medical imaging (see Fig. 10). In addition, horizontal circular shifts are relevant for panoramic (360◦) cameras,
e.g. in autonomous cars (see Fig. 11).

B.3.2 Interpolation kernel

In Section 2 of the paper we proved that AFC is robust even to sub-pixel shifts. Our robustness guarantees assume the digital
image processed by the network corresponds to point-wise samples of a continuous-space image that had been convolved with
a perfect anti-aliasing filter prior to sampling (though, empirically, our method performs well with other types of interpolation
kernels, e.g. see Fig. 4 of the paper). Although this may seem like a serious limitation, it is in fact the standard setting in any
imaging system. Indeed, in any optical imaging system, the image impinging on the detector corresponds to the continuous
scene convolved with a low-pass filter. This low-pass filter completely zeros out all frequencies above a cutoff frequency
that is inversely proportional to the diameter of the aperture [10]. Thus, while in many domains perfect low-pass filtering
is challenging to achieve, in Optics, this diffraction limit is in fact impossible to avoid. Cameras are designed such that the
cutoff frequency of the aperture corresponds to the Nyquist frequency of the CCD array. In systems where the aperture can
be modified by the user, the CCD array is typically adjusted to the minimal aperture width and an additional anti-aliasing
filter element is inserted in front of the CCD [26], so that the Nyquist condition is still met for any chosen aperture diameter
within the allowed range. It should be noted, however, that the digital image captured by the sensor typically undergoes a
series of nonlinear operations within the image signal processor (ISP) of the camera. This implies that shift equivariance may
be lost already at the camera level, before the image reaches our convnet. Addressing these effects is beyond the scope of our
work.

C. Future work

This study shows how an aliasing-free convnet can be used to build an image classifier with certified shift robustness. Yet,
the applications of such convnet are not limited to that purpose; our method can be applied in other domains in which aliasing
has been shown to be damaging, such as generative models [17]. Furthermore, our method guarantees shift-equivariant
internal representation, a stronger property than shift-invariance. Future work may examine the importance of this property
in other tasks. For example, our method can be naturally expanded to construct a shift-equivariant convnets for segmentation.

D. Polynomial activation function

D.1. Coefficients initialization

The Polynomial activation function is a point-wise polynomial:

Poly2(x) = a0 + a1x+ a2x
2 , (11)

where the coefficients {a0, a1, a2} are trainable parameters, which are shared per-channel. They were initialized by fitting
this function to the GeLU, as proposed by Gottemukkula [11], to function as an approximation to the original activation
function ConvNeXt works well with. This initialization gives the function presented in Figure 6 (left). Yet, the activation
function may converge to a completely different function by the end of the training. Moreover, it may differ significantly
between different layers and between different channels in the same layer. Figure 6 (right) shows the final activation function
for five different channels in the first block of a trained model.

2 1 0 1 2
x

0.0

0.5

1.0

1.5

2.0

2.5 GeLU(x)
Poly2(x)

3 2 1 0 1 2 3
x

0.0

0.5

1.0

1.5

2.0

2.5

3.0 GeLU(x)
Poly2(x) channel 0
Poly2(x) channel 1
Poly2(x) channel 2
Poly2(x) channel 3
Poly2(x) channel 4

Figure 6. The Poly2(x) activation function. In the left panel, we see how the coefficients are initialized to fit GeLU in range
[√

2, −
√
2
]

(dashed lines). In the right panel we see how, in the trained model, the activation function may change significantly and converge to a
different function in each channel.

D.2. Activation scaling

During our experiments, we found out that scaling the inputs and outputs of the activation function, regardless of the
coefficients themselves, may change the final model results. Thus, we used the activation function:

Polyc (x) = cPoly2(cx) (12)

and were looking for the optimal scale c. This scaling factor can effectively be seen as a scaling factor of the weights
initialization of the pointwise convolution layers before and after the activation function. In Figure 7 we ran a scan over
different scale factors and compared the results of the non-cyclic convolution polynomial model, without additional alias-
free modifications (ConvNeXt-Tiny), and on the final model (ConvNeXt-AFC). The scan was run on “ImageNet200”, a subset
of ImageNet consisting of 200 classes. We compare the results to the results of non-cyclic convolution GeLU model. In the
scope of our search, the best result was achieved with scale c = 7 for ConvNeXt-Tiny and scale c = 4 for ConvNeXt-AFC.
We used scale c = 7 for the rest of the polynomial models, as it achieved slightly better results on the full dataset.

1 2 3 4 5 6 7 8 9 10 11
c

80.5

81.0

81.5

82.0

82.5

83.0

83.5

Ac
cu

ra
cy

ConvNeXt-AFC
ConvNeXt-Tiny (Poly)
ConvNeXt-Tiny (GeLU)

Figure 7. Test accuracy on ImageNet200, non-cyclic convolutions, GeLU and polynomial ConvNeXt with different scales. Scaling
with c = 7 gave the best results in the scope of our search.

D.3. Polynomial activations in other architectures

Polynomial activation functions are relatively cheap to compute, which might motivate their use in the future, regardless
of their advantage in the context of aliasing-free convnets. Despite this, the high curvature of the polynomial activation
seems a barrier to its usage in a wider variety of architectures. To achieve good performance on CIFAR, Gottemukkula [11]
implemented in ResNet [13] a stable version of polynomial activation function, by scaling the pre-activation by the L1 of
the layer, which bounds the maximal input element (note that this scaling technique is not aliasing-free and thus was not
useful for our purposes). We observe this scaling is unnecessary in architectures with sparser usage of activation functions,
such as ConvNeXt and ViT; in Table 4, we show preliminary results suggesting a polynomial activation may be a reasonable
substitute for the widely spread GeLU in Transformer-based architectures as well as convnets.

Task Model Test acc.

ImageNet ConvNeXt-tiny (GeLU) 82.1
ImageNet ConvNeXt-tiny (Poly. deg 2) 81.98

CIFAR10 ViT (GeLU) 97.04
CIFAR10 ViT (Poly. deg 2) 97.08
ImageNet Deit-tiny (GeLU) 72.29
ImageNet Deit-tiny (Poly. deg 4) 71.96

Table 4. Test accuracy in models with polynomial activations.

E. Attacks visualization
We provide visual examples of the attacks described in the paper in Figures 8 to 11.

(a) Original image (b) Circular shifted image (c) Crop-shifted image

Figure 8. Visualization of used attacks. (a) Original ImageNet [6] validation-set image — 224 × 224 center crop of the original 256
× 256 image. (b): Circular shift of 16 pixels in x and y axes. (c): “Crop-shift” of the original image of 16 pixels in x and y axes; the
cropped area is shifted, modeling moving the camera with respect to the scene in the bottom-right direction. The top-left part of the circular
shifted and crop-shifted images are equal to the bottom-right part of the original image. The bottom and right edges of the circular shifted
image consist of the top and left edges of the original image, causing unrealistic artifacts, while in the crop-shifted change we change the
information from the scene.

(a) Original image (b) Shifted image

Figure 9. Visualization of shift attacks similar to the framework of Engstrom et al. [8]. (a) The original image is zero-padded in 8
pixels in each direction. The attack is a translation of up to 8 pixels in each direction, e.g. (b) is a translation of 6 and −2.5 pixels in x and
y axes respectively. Sub-pixel translations are done using bilinear interpolation.

(a) Original image (b) Circular shifted image

Figure 10. Circular translation of a retinal image. (a) Original Image [28]. (b) Circular translated image. The retinal image has a
uniform background, hence circular shift is equivalent to a translation of the object within the image (i.e. “crop-shift”).

(a) Original image

(b) Circular shifted image

Figure 11. Circular translation of a panoramic image. (a) Original Image [1]. (b) Circular translated image, representing a translation
of the camera with respect to the scene, without any edge artifacts.

F. Formal shift-invariance proofs
F.1. Alias-Free polynomial activation function

In the paper, we presented a new alias-free activation function (described in Algorithm 1 in the paper) that, together with
alias-free downsampling layers, can completely solve the aliasing problem, and lead to perfectly shift-invariant CNNs. The
validity of this solution relies on the following facts:

1. Proposition 2 of the paper (which we formally prove below) ensures the activations are shift-equivariant w.r.t. continuous
domain.

2. Convolution and alias-free downsampling layers are indeed shift-equivariant w.r.t. continuous domain (e.g., see proof
in [17]).

3. A composition of functions which are shift-equivariant w.r.t. continuous domain remains shift-equivariant w.r.t. contin-
uous domain.

4. Shift-invariance w.r.t. continuous domain is implied from shift-equivariance w.r.t. continuous domain, as was shown in
Proposition 1 of the paper.

Therefore, all that remains is to prove Proposition 2. For convenience (to help visualize the proof), we show Figure 2 of the
paper again (see Fig. 12).

Proof (Proposition 2) We assume that the input x is sampled from xc, a 1
T -band-limited signal at sample rate T, i.e.

x [n] = xc (nT) . (13)

We denote the DTFT of x [n] as:

Xf (θ) =

∞∑
n=−∞

x [n] e−jθn, (14)

and the CTFT of xc as:

XF (ω) =

∫ ∞

−∞
x (t) e−j2πωt dt. (15)

In addition, we define a reconstruction operator as a sinc interpolation of the discrete signal:

Recon (x [n]) (t) =
∑
n∈Z

x [n] sinc

(
t− nT

T

)
. (16)

It implies that:
xc (t) = Recon (x [n]) (t) . (17)

For easing the proof notation, we denote applying Algorithm 1 of the paper as a whole on x [n] as f (x [n]).
A well-known relation between Xf (θ) and XF (ω) for any continuous signal and its discrete representation is:

Xf (θ) =
1

T

∞∑
k=−∞

XF

(
θ + 2πk

T

)
. (18)

This relation is represented in Figure 12 (a). Since the support of XF is limited by 1
T , we can express Xf (θ) in the frequency

range θ ∈ [−π, π] as :

Xf (θ) = XF

(
θ

T

)
. (19)

From now on we will look at the DTFT domain in the range θ ∈ [−π, π], since the effects on the rest of the replications are
equal, i.e.:

∀k ∈ Z, ∀θ ∈ [−π, π] : Xf (θ + 2πk) = Xf (θ) ; (20)

this expression is true also for the DTFT of every signal from now on.

Figure 12. A demonstration of the proposed non-linearities in the frequency domain. The top plot at each panel represents the signal in
the continuous domain, and the bottom represents the discrete domain. Where the input (a) is upsampled it shrinks its frequency response,
expanding the allowed frequencies (b). Applying the polynomial activation expands the frequency response support by as factor d, without
causing aliasing in the relevant frequencies (c1). Thus, the discrete signal remains a faithful representation of the continuous signal after
applying LPF (d1) and downsample back to the same spatial size (d2). However, applying GeLU expands the support infinitely (c2). This
leads to an aliasing effect — interference in the relevant frequencies marked in red in (c2). This causes the discrete signal not to be a correct
representation of the continuous one, after LPF (d2) and downsampling (e2).

We will show that the operation presented in Algorithm 1 on x [n] is equivalent to applying polynomial activation in the
continuous domain, following an LPF, i.e.

f (x [n]) [n] = LPF 2
d+1

(Polyd (xc (t))) (nT) (21)

= LPF 2
d+1

(Polyd (Recon (x [n]))) (nT) . (22)

At step 1 of the algorithm, the signal is upsampled using sinc interpolation (xup ← Upsample d+1
2

(x)), giving the
expression

xup [m] =
∑
n∈Z

x [n] sinc

(
m− nI

I

)
, (23)

where I = d+1
2 .

The frequency response of upsampling is a contraction in the frequency axis:

Xf
up (θ) = Xf (θI) =

{
Xf (θI) |θ| ≤ π/I

0 |θ| > π/I
, (24)

which indeed represents a sample of the continuous signal at the rate IT , as can be seen in Fig. 12(b).

At step 2 of the algorithm, Polyd is applied on xup, giving ypoly. From the duality of multiplication and convolution in
spatial and Fourier domains, we get that:

Y f
poly (θ) = a0 +

d∑
k=1

ak

(
1

2π

)k

Xf
up ∗ ... ∗Xf

up︸ ︷︷ ︸
k times

(θ) . (25)

Without loss of generality, we can assume for simplicity that Polyd (x) = xd and omit the constant factor
(

1
2π

)k
, since the

frequency expansion is determined solely by the highest degree of the polynomial. Since the support of Polyd (x) = xd

equals to the support of x multiplied by d, and since the input support was contracted at factor I = d+1
2 , we get that the

support of Xf
up ∗ ... ∗Xf

up︸ ︷︷ ︸
d times

is πd
I .

We get that the polynomial output support is:

πd

I
=

2πd

d+ 1
> π , (26)

therefore aliasing occurs. The extension of the support beyond the range θ ∈ [−π, π] is :

2πd

d+ 1
− π =

πd− π

d+ 1
= π − 2π

d+ 1
= π − π

I
(27)

Hence, the replications due to the aliasing do not affect the frequency domain of |θ| ≤ π/I , i.e.:

Y f
poly (θ) =



Xf
up ∗ ... ∗Xf

up︸ ︷︷ ︸
d times

(θI) |θ| ≤ π/I

Xf
up ∗ ... ∗Xf

up︸ ︷︷ ︸
d times

(θI) +Xf
up ∗ ... ∗Xf

up︸ ︷︷ ︸
d times

(θI − 2π) θ > π/I

Xf
up ∗ ... ∗Xf

up︸ ︷︷ ︸
d times

(θI) +Xf
up ∗ ... ∗Xf

up︸ ︷︷ ︸
d times

(θI + 2π) θ < −π/I

, (28)

where the summations in the two bottom cases represent aliasing caused by the expansion of the near replications. This
partial aliasing effect caused by the polynomial is presented in Fig. 12(c1).

At step 3, we use an LPF1/I , thus we eliminate all the aliased frequencies, and get:

Y f
LPF (θ) =


Xf

up ∗ ... ∗Xf
up︸ ︷︷ ︸

d times

(θI) |θ| ≤ π/I

0 |θ| > π/I

, (29)

which can be seen in Fig. 12(d1).
At step 4, applying DownsampleI expands the frequency domain, so we get

Y f (θ) = Xf ∗ ... ∗Xf︸ ︷︷ ︸
d times

(θ) , θ ∈ [−π, π] . (30)

We note again that this expression is true for the domain θ ∈ [−π, π], specifically because the actual support of
Xf ∗ ... ∗Xf︸ ︷︷ ︸

d times

(θ) is larger. However, the frequencies beyond this range were eliminated by the LPF, as can be seen in

Fig. 12(e1).
Recalling again that Xf (θ) = XF

(
θ
T

)
, we get that the CTFT of the continuous signal of the final expression y is

Y F (ω) =

XF ∗ ... ∗XF︸ ︷︷ ︸
d times

(ω) |ω| ≤ 1
T

0 |ω| > 1
T ,

(31)

which is equivalent to the signal we would get by applying LPF1/I (Polyd (·)) on xc.
Shift-equivariance w.r.t. continuous domain stems from this equivalence because we get that

f (x [n]) [n] = LPF 2
d+1

(Polyd (Recon (x [n]))) (nT) (32)

⇒ f (τx [n]) [n] = LPF 2
d+1

(Polyd (Recon (τx [n]))) (nT) (33)

= LPF 2
d+1

(Polyd (Recon (x [n]))) (nT +∆) (34)

= τf (x [n]) [n] . (35)

The transition in Eq. (34) is justified due to shift-equivariance w.r.t. continuous domain of reconstruction and alias-free
downsample operators, and shift-equivariance of point-wise operations in the continuous domain.

F.2. LPF-Poly

In Appendix F.1 we showed that our polynomial activation function, which is derived in Algorithm 1 of the paper, is
alias-free for any polynomial. Specifically, as can be seen in Algorithm 1, the required upsample rate to avoid aliasing is
dependent on the polynomial degree and equals to d+1

2 , where d is the polynomial degree. In this section, we generalize
this concept to cases where we would like to avoid upsampling, e.g. in layers where the channels have large spatial extents,
where it is too computationally expensive. In addition, we show that LPFPoly2 which was presented in the paper is indeed
alias-free and shift-equivariant w.r.t. continuous domain, using the proof concept regarding Algorithm 1.

We defined LPF-Poly as:

LPFPoly2 (x [n]) [n] = a0 + a1x [n] + x [n] · LPFc (x [n]) [n] . (36)

Note that c is a real number in the range (0, 1), representing the LPF’s cutoff ratio. In addition, note that in the paper
we omitted some of the [n] in the notation for more compact writing. The output support is implied by the component of
x · LPFc (x), and, similarly to the computation in Eq. (26), is equal to (1 + c)π.

We get that

Y f
poly (θ) =


Xf ∗Xf

LPF (θ) |θ| ≤ π − πc

Xf ∗Xf
LPF (θ) +Xf ∗Xf

LPF (θ − 2π) θ > π − πc

Xf ∗Xf
LPF (θ) +Xf ∗Xf

LPF (θ + 2π) θ < − (π − πc)

, (37)

which means that the range |θ| ≤ π(1− c) is alias-free. This was achieved without the need of upsampling. Next, applying
LPF1−c gives:

Y f
LPF (θ) =

{
Xf ∗Xf

LPF (θ) |θ| ≤ π − πc

0 |θ| > π − πc
, (38)

hence, the final output is alias-free. Shift-equivariance w.r.t. continuous domain is derived from this, similarly to Eq. (33).

G. Implementation
Our theoretical results regarding discrete representation of continuous signals are based on infinite signals, which may

seem impractical to real models which work on finite images. However, the results apply in a setting in which we assume
that the continuous signals are periodic, and we finitely sample a single period. These assumptions practically limit our
discussion to robustness to circular translations, which is the same setting that was considered in previous works [4, 33].
Next, we explain our implementation for the “ideal LPF”, which was used in BlurPool and phase 3 of Algorithm 1 of the
paper, and for the “reconstruction filter”, which was used in Upsample in step 1 of Algorithm 1.

Both of these filters can be implemented using multiplication in the Fourier domain, working with DFT, which is defined
for a finite signal with length N as

XD[k] = DFT (x [n]) [k] =

N−1∑
n=0

x [n] e−
j2π
N kn . (39)

Similarly, the inverse of DFT is defined as:

x [n] = IDFT
(
XD [k]

)
[n] =

1

N

N−1∑
k=0

XD [k] e
j2π
N kn . (40)

For simplicity, all our derivations are for 1-D signals. Our derivations trivially apply to the 2-D case by applying the filters
separately on rows and on columns.

LPF We used a low-pass filter wherever it was necessary to prevent aliasing due to downsampling, namely in BlurPool
layers that replace strided convolutions, and alias-free polynomial activations, before subsampling the polynomial results
(Algorithm 1). We used an “ideal filter”, i.e. a filter that eliminates all the frequencies above the cutoff ratio. Practically, this
kind of filter can be implemented using multiplication in DFT domain:

LPFcutoff,c (x [n]) [n] = IDFT
(
DFT (x [n]) [k]HD

cutoff,c [k]
)
[n] , (41)

where HD
cutoff,c is a “rectangle filter” defined for spatial dimension N and cutoff ratio c ∈ [0, 1] as

HD
cutoff,c [k] =


1 0 ≤ k < N

2 c ,

0 N
2 c ≤ k ≤ N − N

2 c ,

1 N − N
2 c < k ≤ N − 1 .

. (42)

Downsampling As mentioned above, all downsampling operations were performed in an alias-free manner, using low-pass
filters before subsampling. For subsampling at factor s, we used LPF with cutoff ratio c = 1

s . Then, we used subsampling
with a fixed grid:

xdown [n] = LPF1/s (x [n]) [sn] (43)

Upsampling In the proof of Algorithm 1, we assume we use “ideal upsample”, which can be interpreted as a re-sampling
in a higher rate of the continuous signal, which was restored using sinc interpolation:

xupI
[m] =

∑
n

x [n] sinc

(
m− nI

I

)
(44)

In practice, and specifically in a finite signal case, upsampling is performed in two steps: First, we use zero padding and get
the intermediate signal

xz [m] =

{
x
[
m
I

]
m = kI ,

0 otherwise.
(45)

Then, the zero-padded signal is convolved with sinc interpolation kernel. This step is equivalent to multiplication in Fourier
domain with a rectangle, similarly to the LPF implementation.

UpsampleI (x [n]) [n] = IDFT
(
DFT (xz [n]) [k]H

D
upsample,I [k]

)
[n] , (46)

Practically we used the following upsample kernel for a signal with spatial dimension N . For even N :

HD
upsample,I [k] =


1 0 ≤ k < N

2 ,

1 N
(
I − 1

2

)
+ 1 ≤ k ≤ IN − 1

0.5 k = N
2 , k = N

(
I − 1

2

)
0 else

(47)

For odd N:

HD
upsample,I [k] =


1 0 ≤ k < ⌊N2 ⌋
1 ⌈N

(
I − 1

2

)
⌉ ≤ k ≤ 2N − 1

0 else
(48)

The reason for that is that in practice, we cannot assume the Nyquist condition holds. Specifically, for a finite signal x [n] with
an even size N , we cannot assume that XD

[
N
2

]
= XD

[
3N
2

]
= 0. Note that for signals with even length, the N

2 component
in the DFT domain represents the continual frequency of π

T , and thus, due to aliasing effect, we have XD
[
N
2

]
= XD

[
3N
2

]
=

XF
(
π
T

)
+XF

(−π
T

)
. For a representation of the continuous signal with a higher sampling rate (e.g. the upsampled signal),

the overlap in this frequency would not happen, hence we multiply this component by 1
2 to get 1

2

(
XF

(
π
T

)
+XF

(−π
T

))
=

XF
(
π
T

)
. In this equation we use the assumption that XF

(
π
T

)
∈ R. For a real signal The CTFT is conjugate symmetric,

meaning XF
(
π
T

)
= XF

(−π
T

)∗
. Therefore in case XF

(
π
T

)
has an imaginary component, it cannot be retrieved from the

sum. A more detailed proof of this is given in Appendix H below.
The upsample method presented above is formally shown in Algorithm 2 with upsampling factor 2. To ease notations we

denote below HD
2 = HD

upsample,2.

Algorithm 2 Upsample
Input: xN [n] ∈ RN

xz ← {xN [0] , 0, xd [1] , 0 , ..., xd [N − 1] , 0}
x2N ← IDFT

{
DFT {xz}HD

2

}
Output: x2N [n]

H. Implementation proofs
In the following section, we provide formal proofs for the correctness of the filters presented in Appendix G In the setting

of finite discrete signals, where we assume the continuous domain signals are periodic. For simplicity to the reader, we prove
the correctness for 1-dimensional signal, and for upsampling at factor 2. The proofs can be easily generalized to 2D signals
and a higher upsampling rate.

H.1. Definitions

Let x (t) be a band-limited continuous signal, with CTFT XF (ω) (as defined in Eq. (15)). x (t) is periodic with period
NT , i.e. x (NT + t) = x (t). We define discrete sampling as:

x [n] = x (nT) , (49)

and define a finite sampling as taking only one period of the discrete signal, i.e.

xN [n] = {x0, ..., xN−1} = {x (0) , x (T) , ..., x ((N − 1)T)} . (50)

H.2. Upsample

As noted in Appendix G, we assume that XF (ω) = 0 ∀|ω| > π
T and that XF

(
π
T

)
∈ R (This a relaxation of Nyquist

condition for which XF
(
π
T

)
= 0). We prove the validity of the following method to upsample xN [n] to retrieve:

x2N [n] = x

(
n
T

2

)
=

{
x (0) , x

(
T

2

)
, ..., x

(
(2N − 1)

T

2

)}
. (51)

Claim 1 Let x (t) and xN [n] be a continuous signal and its finite discrete representation as defined in Appendix H.1. Then
the output of Algorithm 2 is

x2N [n] = x

(
n
T

2

)
=

{
x (0) , x

(
T

2

)
, ..., x

(
(2N − 1)

T

2

)}
,

using the described reconstruction filter HD
2 below:

For even N:

HD
2 [k] =


1 0 ≤ k < N

2 ,

1 3N
2 + 1 ≤ k ≤ 2N − 1

0.5 k = N
2 , k = 3N

2

0 else

(52)

For odd N:

HD
2 [k] =


1 0 ≤ k < ⌊N2 ⌋
1 ⌈ 3N2 ⌉ ≤ k ≤ 2N − 1

0 else

(53)

Proof (Claim 1) In order to proof Claim 1, we will show that the DFT of its output equals to XD
2N , i.e. the DFT of the

signal x2N that is defined in Eq. (51).

H.2.1 DFT of zero-padded signal

Recall that in the first step of the Algorithm 2 we apply zero padding on the input xN . For a finite discrete signal with length
N , DFT is defined as Eq. (39):

XD[k] =

N−1∑
n=0

x[n]e−
j2π
N nk =︸︷︷︸

WN≜e
j2π
N

N−1∑
n=0

x[n]W−nk
N

Claim 2 Let XD
N be the DFT of the input xN of Algorithm 2 and XD

z be the DFT of the zero-padded signal xz in step 1 of
Algorithm 2. Then:

XD
z [k] =

{
XD

N [k] k < N

XD
N [k −N] k ≥ N

(54)

Proof (Claim 2)

XD
z [k] =

2N−1∑
n=0

xz [n]W
−nk
2N (55)

=
(∗)

N−1∑
n′=0

xz [2n
′]W−2n′k

2N + xz[2n
′ + 1]︸ ︷︷ ︸

=0 ∀n′

W
−(2n′+1)k
2N

 (56)

=

N−1∑
n′=0

xz [2n
′]W−2n′k

2N (57)

=
(∗∗)

N−1∑
n′=0

xN [n′]W−n′k
N (58)

(59)

In (∗) we separated the summation to even and odd components, and in (∗∗) we used the fact that

W−2n′k
2N = e

j2π
2N (−2n′k) = e

j2π
N (−n′k) = W−n′k

N .

Note that we got a sum of N components, yet XD
z [k] is defined for k = 0, 1, ..., 2N − 1. For k = 0, 1, ..., N − 1 we got the

definition of DFT, meaning
XD

z [k] = XD
N [k] . (60)

For k = N, ..., 2N − 1 using the property

W
−n′(N+k)
N = W−n′N

N︸ ︷︷ ︸
=e

j2π
N

(−n′N)=e−j2πn′=1

W−n′k
N = W−n′k

N

we get:

XD
z [k] =

N−1∑
n′=0

xN [n′]W−n′k
N (61)

=

N−1∑
n′=0

xN [n′]W
−n′(N+(k−N))
N (62)

=

N−1∑
n′=0

xN [n′]W
−n′(k−N)
N (63)

= XD
N [k −N] . (64)

H.2.2 Expressing DFT with CTFT

In the previous section we expressed XD
z with XD

N . In the following section we will express XD
2N using XD

N . In addition,
we assume that N is even, and will show the other case afterwards. First, we express the DFT of xN with the CTFT of x, by
using their relations with DTFT:

XD
N [k] = Xf

N

(
θ =

2πk

N

)
(65)

=
1

T

∞∑
l=−∞

XF

(
θ + 2πl

T

)
(66)

=
1

T

∞∑
l=−∞

XF

(
2πk

NT
+

2πl

T

)
(67)

=︸︷︷︸
XF (ω)=0 ∀|ω|> π

T

1

T

(
XF

(
2πk

NT

)
+XF

(
2πk

NT
− 2π

T

))
(68)

⇒ XD
N [k] =

1

T


XF (2πkNT) 0 ≤ k ≤ N

2 − 1

XF (πT) +XF (− π
T) k = N

2

XF (2πkNT −
2π
T) N

2 + 1 ≤ k ≤ N − 1

. (69)

Note that the last two transitions hold considering the limited support of XF :

XF (
2πk

NT
)︸ ︷︷ ︸

=0 ∀k>N
2

+XF (
2πk

NT
− 2π

T
)︸ ︷︷ ︸

=0 ∀k<N
2

.

Next, we will derive a similar expression for XD
2N [k]:

XD
2N [k] = Xf

2N

(
θ =

2πk

2N

)
(70)

=
1

T

∞∑
l=−∞

XF

(
θ + 2πl

T/2

)
(71)

=
1

T

XF

(
2πk

NT

)
︸ ︷︷ ︸
=0 ∀k>N

2

+XF

(
2πk

NT
− 2π

T/2

)
︸ ︷︷ ︸

=0 ∀k< 3N
2

 (72)

(73)

We get:

⇒ XD
2N [k] =

1

T


XF (2πkNT) 0 ≤ k ≤ N

2

0 N
2 + 1 ≤ k ≤ 3N

2 − 1

XF (2πkNT −
4π
T) 3N

2 ≤ k ≤ 2N − 1

(74)

H.2.3 Expressing XD
2N with XD

N

Considering the second step of Algorithm 2, we need to show that applying the filter HD
2 on XD

z yields XD
2N , meaning

XD
2N [k] = XD

z [k]HD
2 .

By plugging XD
N [k] (Eq. (69)) in XD

z [k] (Eq. (54)) we get:

XD
z [k] =

{
XD

N [k] k < N

XD
N [k −N] k ≥ N

(75)

=
1

T



XF
(
2πk
NT

)
0 ≤ k ≤ N

2 − 1

XF
(
π
T

)
+XF

(
− π

T

)
k = N

2

XF
(
2πk
NT −

2π
T

)
N
2 + 1 ≤ k ≤ N − 1

XF
(

2π(k−N)
NT

)
N ≤ k ≤ 3N

2 − 1

XF
(
π
T

)
+XF

(
− π

T

)
k = 3N

2

XF
(

2π(k−N)
NT − 2π

T

)
3N
2 + 1 ≤ k ≤ 2N − 1

. (76)

Thus, by applying the filter

HD
2 [k] =


1 0 ≤ k < N

2 ,

1 3N
2 + 1 ≤ k ≤ 2N − 1

0.5 k = N
2 , k = 3N

2

0 else

(77)

we get:

HD
2 [k]XD

z [k] =
1

T



XF
(
2πk
NT

)
0 ≤ k ≤ N

2 − 1
1
2

(
XF

(
π
T

)
+XF

(
− π

T

))
k = N

2

0 N
2 + 1 ≤ k ≤ N − 1

0 N ≤ k ≤ 3N
2 − 1

1
2

(
XF

(
π
T

)
+XF

(
− π

T

))
k = 3N

2

XF
(

2π(k−N)
NT − 2π

T

)
3N
2 + 1 ≤ k ≤ 2N − 1

. (78)

Note that for real x(t), XF is conjugate symmetric, and we assumed that XF
(
π
T

)
∈ R. Therefore:

• for k = N
2 ,

3N
2 :

XF
(π

T

)
+XF

(
− π

T

)
= 2XF

(π

T

)
= 2XF

(
− π

T

)
. (79)

• for 3N
2 + 1 ≤ k ≤ 2N − 1:

XD
z [k] = XF

(
2π (k −N)

NT
− 2π

T

)
= XF

(
2πk

NT
− 2πN

NT
− 2π

T

)
= XF

(
2πk

NT
− 4π

T

)
. (80)

Thus we get:

HD
2 [k]XD

z [k] =
1

T



XF
(
2πk
NT

)
0 ≤ k ≤ N

2 − 1

XF
(
π
T

)
k = N

2

0 N
2 + 1 ≤ k ≤ N − 1

0 N ≤ k ≤ 3N
2 − 1

XF
(
− π

T

)
k = 3N

2

XF
(
2πk
NT −

4π
T

)
3N
2 + 1 ≤ k ≤ 2N − 1

(81)

=
1

T


XF

(
2πk
NT

)
0 ≤ k ≤ N

2

0 N
2 + 1 ≤ k ≤ 3N

2 − 1

XF
(
2πk
NT −

4π
T

)
3N
2 ≤ k ≤ 2N − 1

(82)

=
(74)

XD
2N [k] . (83)

H.2.4 Odd N

By repeating the derivations of section Appendix H.2.2 for odd N we get:

XD
N [k] =

1

T

{
XF

(
2πk
NT

)
0 ≤ k ≤ ⌊N2 ⌋

XF
(
2πk
NT −

2π
T

)
⌈N2 ⌉ ≤ k ≤ N − 1

. (84)

XD
2N [k] =

1

T


XF

(
2πk
NT

)
0 ≤ k ≤ ⌊N2 ⌋

0 ⌈N2 ⌉ ≤ k ≤ ⌊ 3N2 ⌋
XF

(
2πk
NT −

4π
T

)
⌈ 3N2 ⌉ ≤ k ≤ 2N − 1

. (85)

By plugging XD
N [k] (84) in XD

0 [k] (54) we get:

XD
z [k] =

{
XD

N [k] k < N

XD
N [k −N] k ≥ N

(86)

=
1

T


XF

(
2πk
NT

)
0 ≤ k ≤ ⌊N2 ⌋

XF
(
2πk
NT −

2π
T

)
⌈N2 ⌉ ≤ k ≤ N − 1

XF
(

2π(k−N)
NT

)
N ≤ k ≤ ⌊ 3N2 ⌋

XF
(

2π(k−N)
NT − 2π

T

)
⌈ 3N2 ⌉ ≤ k ≤ 2N − 1

. (87)

Then, by applying the filter

HD
2 [k] =


1 0 ≤ k < ⌊N2 ⌋,
1 ⌈ 3N2 ⌉ ≤ k ≤ 2N − 1

0 else

(88)

we get:

HD
2 [k]XD

z [k] =
1

T


XF

(
2πk
NT

)
0 ≤ k ≤ ⌊N2 ⌋

0 ⌈N2 ⌉ ≤ k ≤ ⌊ 3N2 ⌋
XF

(
2π(k−N)

NT − 2π
T

)
⌈ 3N2 ⌉ ≤ k ≤ 2N − 1

(89)

=
(85)

XD
2N [k] . (90)

H.3. LPF

We use an “ideal LPF” before downsampling in BlurPool layers and in alias-free polynomial activations. As mentioned
in Appendix F.1 “ideal LPF” in the context of subsampling of infinite discrete signals is a filter that completely eliminates all
the frequencies beyond the Nyquist condition. E.g. in case of subsampling in factor I , i.e.

y [n] = x [In] ,

an “ideal LPF” in DTFT domain is implemented by multiplication with the filter:

Hf
1/I (θ) =

{
1 |θ| < π

I ,

0 |θ| ≥ π
I

When considering the continuous domain, we expect the results to be equal to the discrete representation of the continuous
signal after applying “ideal LPF”, that is multiplication in CTFT domain with the filter

HF
1/I (θ) =

{
1 |θ| < π

TI

0 |θ| ≥ π
TI

,

where T is the sample rate of x [n].

Claim 3 Let x (t) and xN [n] be a continuous signal and its finite discrete representation as defined in Appendix H.1. In
addition, let xLPF (t) be the continuous signal received by applying HF

1/I on x (t) in the continuous domain, i.e.:

XF
LPF (ω) =

{
XF (ω) |ω| < π

TI

0 |ω| ≥ π
TI

(91)

In addition, define xLPF (t) discrete representation as:

xLPF [n] = {xLPF (0) , xLPF (T) , ..., xLPF ((N − 1)T)} .

Then applying LPF1/I on xN gives
LPF1/I (xN) = xLPF [n]

where LPF1/I is defined as multiplication in DFT domain with

HD
1/I [k] =


1 0 ≤ k < N

2I ,

0 N
2I ≤ k ≤ N − N

2I ,

1 N − N
2I < k ≤ N − 1 .

.

proof (Claim 3) Similarly to Appendix H.2.2, using the relations between DFT, DTFT and CTFT we get:

XD
LPF [k] = Xf

LPF

(
θ =

2πk

N

)
(92)

=
1

T

∞∑
l=−∞

XF
LPF

(
θ + 2πl

T

)
(93)

=
1

T

∞∑
l=−∞

XF
LPF

(
2πk

NT
+

2πl

T

)
(94)

=︸︷︷︸
XF (ω)=0 ∀|ω|> π

T

1

T

(
XF

LPF

(
2πk

NT

)
+XF

LPF

(
2πk

NT
− 2π

T

))
. (95)

By plugging Eq. (91) we get:

XD
LPF [k] =

1

T


XF

(
2πk
2T

)
0 ≤ k < N

2I

0 N
2I ≤ k ≤ N − N

2I

XF
(
2πk
NT −

2π
T

)
N − N

2I < k ≤ N − 1 .

(96)

Recall that xN satisfies (Eq. (69)):

XD
N [k] =

1

T


XF

(
2πk
2T

)
0 ≤ k < N

2 − 1

XF
(
π
T

)
+XF

(
− π

T

)
k = N

2

XF
(
2πk
NT −

2π
T

)
N
2 < k ≤ N − 1

;

thus we get
XD

LPF [k] = HD
1/I [k]X

D [k] . (97)

	. Introduction
	. Methods
	. Implementation
	. Experiments
	. Shift equivariance
	. Consistency and Classification accuracy
	. Translation robustness
	. Robustness to other shifts

	. Related work
	. Discussion
	. Additional experiments
	. Limitations
	. Accuracy
	. Runtime performance
	. Image translations
	Circular translations
	Interpolation kernel

	. Future work
	. Polynomial activation function
	. Coefficients initialization
	. Activation scaling
	. Polynomial activations in other architectures

	. Attacks visualization
	. Formal shift-invariance proofs
	. Alias-Free polynomial activation function
	. LPF-Poly

	. Implementation
	. Implementation proofs
	. Definitions
	. Upsample
	DFT of zero-padded signal
	Expressing DFT with CTFT
	Expressing X2ND with XND
	Odd N

	. LPF

