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1. Training Details

In this section, we elaborate on the implementation de-
tails and hyperparameters used for experiments in the main
manuscript. To unify configurations across all experiments,
our encoder composes of 4 layers of transformer block (2
cross-attention layers and 2 self-attention layers) whereas
there are only 2 layers in the decoder (For HD dataset, i.e.,
TVSum, we only use encoding layers). We set the hidden
dimension of transformers as 256, and use the Adam op-
timizer with a weight decay of 1e-4. Besides, we set the
temperature of a scaling parameter τ for contrastive loss
as 0.5 for all experiments. Loss balancing parameters are
λmargin = 1, λcont = 1, λL1 = 10, λgIoU = 1, λCE = 4 and
λneg = 1, unless otherwise mentioned. Additionally, we use
the PANN [5] model trained on AudioSet [3] to extract audio
features1 for experiments with the audio modality.

Other configurations are described as follows:
QVHighlight. We use video features extracted from both
pretrained SlowFast [2] (SF) and CLIP encoder [8], and text
embeddings from CLIP, following the Moment-DETR. We
train QD-DETR for 200 epochs with a batch size of 32 and
a learning rate of 1e-4.
Charades-STA. We utilize official VGG [9] features with
GloVe [7] text embedding. To compare with additional base-
lines, we also test our model on pretrained C3D [10], Slow-
Fast and CLIP for video features with CLIP text embedding.
Specifically, we utilize pre-extracted features provided by
other baselines repositories: UMT1, VSLNet2 and Moment-
DETR3. We train ours for 100 epochs with a batch size of 8
and a learning rate of 1e-4.
TVSum. I3D [1] features pretrained on Kinetics-400 [4] are
utilized as a visual one, and CLIP features are used for the
text embedding. Following the most recent work [6], we
train our model for 2000 epochs with a learning rate of 1e-3.
The batch size is set to 4.

1https://github.com/TencentARC/UMT
2https://github.com/IsaacChanghau/VSLNet
3https://github.com/jayleicn/moment detr

Table 1. Experimental results on QVHighlights.
MR HD

R1 mAP >= Very Good
@0.5 @0.7 @0.5 @0.75 Avg. mAP HIT@1
Performances with respect to query length

S: # words ≤ 8, M: 8 < # words ≤ 13, L: 13 < # words

S M-DETR 51.82 34.49 51.48 29.48 29.43 37.11 59.27
QD-DETR 63.95 48.18 61.18 40.93 40.23 38.67 63.60

M M-DETR 57.47 39.22 57.41 33.43 34.73 37.49 56.26
QD-DETR 65.91 51.43 65.48 45.54 44.46 40.07 62.90

L M-DETR 49.35 32.90 52.89 29.14 30.54 35.95 55.16
QD-DETR 57.42 40.32 61.03 37.67 38.56 39.24 61.29

2. Further study on model performance on vary-
ing lengths of the query.

As discussed in the limitation, the performance of QD-
DETR may depend on the quality of provided ground truth
text descriptions. Yet, this does not imply the QD-DETR’s
vulnerability against commonly used meaningless words in
text descriptions. As we think the queries with longer lengths
may have a higher chance of including noisy texts, we divide
the validation set into 3 groups each with long-, medium-,
and short-length queries, and report the query-length-wise
performances of QD-DETR in Tab. 1. As shown, QD-DETR
works well regardless of the query length, showing [36.7,
28.0, 26.3%] and [7.3, 11.8, 11.1%] improvements in mAP
each for MR and HD with [Short, Medium, Long] queries.
This study implies that while irrelevant (wrong) text descrip-
tions for video contexts can degrade the effectiveness of
QD-DETR, QD-DETR is robust against meaningless words
that are commonly present in text queries.
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