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A. Derivations and Proofs
A.1. Assumption 1

First of all, the formulas for the two mutual information
terms are:

IT (x, y) =

∫
x∈X

∑
y∈Y

pT (x, y) log
pT (x, y)

pT (x)pT (y)
,

IT (x
t, y) =

∫
xt∈X

∑
y∈Y

pT (x
t, y) log

pT (x
t, y)

pT (xt)pT (y)
.

Recall that Assumption 1 states:

IT (x, y) = IT (x
tr, y)

⇔EpT (x,y)

[
log

pT (x, y)

pT (x)pT (y)

]
= EpT (xtr,y)

[
log

pT (x
tr, y)

pT (xtr)pT (y)

]
⇔EpT (x,y)

[
log

pT (y|x)
pT (y)

]
= EpT (xtr,y)

[
log

pT (y|xtr)

pT (y)

]
= EpT (xtr,y)

[
log

pT (x
tr, y)

pT (xtr)pT (y)

]
⇔EpT (x,xtr,y)

[
log

pT (y|x)
pT (y)

]
= EpT (x,xtr,y)

[
log

pT (y|xtr)

pT (y)

]
⇔EpT (x,xtr,y)

[
log pT (y|x)− log pT (y|xtr)

]
= 0

⇔EpT (x,xtr)

[
EpT (y|x)

[
log pT (y|x)− log pT (y|xtr)

]]
= 0

⇔EpT (x,xtr)

[
KL[pT (y|x), pT (y|xtr)]

]
= 0
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A.2. Proposition 1

Note that our result also holds if l is other dis-
tance/divergence (such as the Jensen Shannon divergence),
only with a modified coefficient of the regularizer term.
However, in this paper, we consider l as the l1 distance.

Proof. First of all, due to Pinsker’s inequality, we have that:

l[pT (y|x), pT (y|xtr)] ≤
√

2KL[pT (y|x), pT (y|xtr)]

⇒EpT (x,xtr)

[
l[pT (y|x), pT (y|xtr)]

]
≤ EpT (x,xtr)

[√
2KL[pT (y|x), pT (y|xtr)]

]
≤

√
EpT (x,xtr) [2KL[pT (y|x), pT (y|xtr)]]

= 0

⇒EpT (x,xtr)

[
l[pT (y|x), pT (y|xtr)]

]
= 0

We have:

ℓ(θ, pT (x, y))− ℓ(θ, pT (x
tr, y))

=EpT (x) [l[pT (y|x), pθ(y|x)]]
− EpT (xtr)

[
l[pT (y|xtr), pθ(y|xtr)]

]
=EpT (x,xtr) [l[pT (y|x), pθ(y|x)]]

− EpT (x,xtr

[
l[pT (y|xtr), pθ(y|xtr)]

]
− EpT (x,xtr)

[
l[pT (y|x), pT (y|xtr)]

]
≤EpT (x,xtr)

[
l[pθ(y|xtr), pθ(y|x)]

]
This is because l satisfies the triangle inequality,

so l[pT (y|x), pθ(y|x)] − l[pT (y|xtr), pθ(y|xtr)] −
l[pT (y|x), pT (y|xtr)] ≤ l[pθ(y|xtr), pθ(y|x)].
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Table 1. ImageNet-C, Batchsize 64: Results for 15 types of corruption with the highest level of severity

Method Classification Error (lower is better)

Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG Average

Source 97.0 96.3 97.4 82.1 90.3 85.3 77.5 83.4 76.9 76 40.9 94.6 83.5 79.1 67.4 81.8
ETA 64.9 62.1 63.4 66.1 67.1 52.2 47.4 48.1 54.2 39.9 32.1 55.0 42.1 39.1 45.1 51.9

ETA+TIPI 63.0 60.9 62.1 65.2 65.4 51.6 46.7 47.6 53.7 39.9 31.6 54.1 41.2 38.2 43.6 51.0

Table 2. ImageNet-C, Batchsize 2: Results for 15 types of corruption with the highest level of severity

Method Classification Error (lower is better)

Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG Average

Source 97.0 96.3 97.4 82.1 90.3 85.3 77.5 83.4 76.9 76 40.9 94.6 83.5 79.1 67.4 81.8
ETA 97.7 97.4 97.5 97.8 97.9 95.1 93.3 92.2 92.3 89.2 78.4 96.4 90.2 90.1 92.3 93.2

ETA+TIPI 87.8 88.8 87.4 88.3 89.3 82.4 70.5 73.2 75.8 60.7 40.8 93.9 64.0 58.8 65.4 75.4

Using Pinsker’s inequality again, we have that:

EpT (x,xtr)

[
l[pθ(y|xtr), pθ(y|x)]

]
≤EpT (x,xtr)

[√
2KL[pθ(y|xtr), pθ(y|x)]

]
≤EpT (x)

[√
2 max
xtr∼T (xtr|x)

KL[pθ(y|xtr), pθ(y|x)]

]

and

EpT (x,xtr)

[
l[pθ(y|xtr), pθ(y|x)]

]
≤EpT (x,xtr)

[√
2KL[pθ(y|x), pθ(y|xtr)]

]
≤EpT (x)

[√
2 max
xtr∼T (xtr|x)

KL[pθ(y|x), pθ(y|xtr)]

]

This concludes our proof.

B. Additional Experiments
B.1. Incorporating TIPI into EATA [1]

EATA [1] proposes a datapoints selection strategy for
TENT, and achieves state-of-the-art performance on the test
time adaptation task. As discussed before, this line of re-
search (datapoint selection for surrogate optimization) is
complementary to ours. Indeed, in this subsection, we show
that TIPI can be incorporated into EATA, thereby improv-
ing EATA’s robustness (EATA only uses TENT and is not
robust against small batchsizes). We refer the readers to [1]
for a detailed discussion on their datapoint selection strat-
egy.

We conduct the experiment with ETA, the variation with-
out weight regularization (ETA outperforms EATA for out-
of-distribution data). Specifically, we compare ETA to

ETA+TIPI, a variant of ETA with the same datapoint se-
lection strategy, but with the TIPI surrogate objective. Fol-
lowing [1], we conduct the experiment on ImageNet-C with
the highest level of severity. The 15 types of corruption
are: gaussian noise, shot noise, impulse noise, defocus blur,
glass blur, motion blur, zoom blur, snow, frost, fog, bright-
ness, contrast, elastic transform, pixelate, and jpeg com-
pression.

Table 1 and Table 2 show the results of this comparison
for batch sizes 64 and 2. For a large batch size, ETA+TIPI
further improves over ETA, pushing a new SOTA result. For
a small batch size, incorporating the TIPI objective help to
stabilize the optimization, thus avoiding network collapse.

Furthermore, note that we keep the datapoint selection
strategy in EATA as is in this experiment. This strategy is
developed specifically for the TENT objective and we did
not make any modifications for TIPI. Yet, using it for TIPI
already improves the model’s performance. This shows that
indeed the two lines of research are complementary. It also
suggests that investigating a datapoint selection strategy tai-
lored for TIPI is a promising direction, and could potentially
improve TIPI’s performance even further.
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