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A. Derivations and Proofs
A.1. Assumption 1

First of all, the formulas for the two mutual information
terms are:
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Recall that Assumption 1 states:
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A.2. Proposition 1

Note that our result also holds if [ is other dis-
tance/divergence (such as the Jensen Shannon divergence),
only with a modified coefficient of the regularizer term.
However, in this paper, we consider [ as the [ distance.

Proof. First of all, due to Pinsker’s inequality, we have that:
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This is because [ satisfies the triangle inequality,

so pr(ylz),pe(ylz)] — Ipr(ylz™), pe(ylz")]
Upr(ylx), pr(yle™)] < Upe(ylz™), pe(ylx)].



Table 1. ImageNet-C, Batchsize 64: Results for 15 types of corruption with the highest level of severity

Method Classification Error (lower is better)
Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG Average
Source 97.0 963 974 821 903 853 775 834 769 76 409 946 835 7T9.1 674 81.8
ETA 649 621 634 66.1 671 522 474 481 542 399 32.1 550 42,1 39.1 451 51.9
ETA+TIPI 63.0 60.9 62.1 652 654 516 46.7 47.6 53.7 399 316 541 412 38.2 43.6 51.0
Table 2. ImageNet-C, Batchsize 2: Results for 15 types of corruption with the highest level of severity
Method Classification Error (lower is better)
Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG Average
Source 97.0 963 974 821 903 853 775 834 769 76 409 946 835 79.1 674 81.8
ETA 977 974 975 978 979 951 933 922 923 892 784 964 90.2 90.1 923 93.2
ETA+TIPI 87.8 888 874 883 893 824 705 732 758 60.7 40.8 939 640 588 654 754
Using Pinsker’s inequality again, we have that: ETA+TIPIL, a variant of ETA with the same datapoint se-
. lection strategy, but with the TIPI surrogate objective. Fol-
' . . .
EpT(a;,gm) [Z [po(ylz™), po(ylx )H lowing [ 1], we conduct the experiment on ImageNet-C with
X the highest level of severity. The 15 types of corruption
<E,. (y i [ 9KL[ps (y[2), po(ylz } ghest level y- ] yP: P
="pr (et \/ [po(yl27), po(yl)] are: gaussian noise, shot noise, impulse noise, defocus blur,
, glass blur, motion blur, zoom blur, snow, frost, fog, bright-
<Ep;(2) \/2 ;ctmnTl?;Erm KL[po(y|z™"), po(y|)] ness, contrast, elastic transform, pixelate, and jpeg com-
pression.
and Table 1 and Table 2 show the results of this comparison
for batch sizes 64 and 2. For a large batch size, ETA+TIPI
Ep (2,2t [Upo(y]z™), po(y]a)]] further improves over ETA, pushing a new SOTA result. For
— a small batch size, incorporating the TIPI objective help to
<Epr(a.atr) [\/2KL[7’9 (ylz), po(yle )]} stabilize the optimization, thus avoiding network collapse.
Furthermore, note that we keep the datapoint selection
<Ep,(2) l\/? mtwn%?ﬁﬂw) KL [pg (y|x),p9(y|x”)]1 strategy in EATA as is in this experiment. This strategy is
developed specifically for the TENT objective and we did
. not make any modifications for TIPI. Yet, using it for TIPI
This concludes our proof. . , .
0 already improves the model’s performance. This shows that

B. Additional Experiments
B.1. Incorporating TIPI into EATA [1]

EATA [1] proposes a datapoints selection strategy for
TENT, and achieves state-of-the-art performance on the test
time adaptation task. As discussed before, this line of re-
search (datapoint selection for surrogate optimization) is
complementary to ours. Indeed, in this subsection, we show
that TIPI can be incorporated into EATA, thereby improv-
ing EATA’s robustness (EATA only uses TENT and is not
robust against small batchsizes). We refer the readers to [1]
for a detailed discussion on their datapoint selection strat-
egy.

We conduct the experiment with ETA, the variation with-
out weight regularization (ETA outperforms EATA for out-
of-distribution data). Specifically, we compare ETA to

indeed the two lines of research are complementary. It also
suggests that investigating a datapoint selection strategy tai-
lored for TIPI is a promising direction, and could potentially
improve TIPI’s performance even further.
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