
Supplementary Material for
Recovering 3D Hand Mesh Sequence from a Single Blurry Image:

A New Dataset and Temporal Unfolding

In this supplementary material, we provide more various
visual results, discussions, and other details that could not
be included in the main manuscript due to the lack of space.
The contents are summarized below:
• S1. Visualization in video format
• S2. Statistics on the BlurHand dataset
• S3. Results from various deblurring methods
• S4. Training details
• S5. Additional qualitative results
• S6. Discussions

S1. Visualization in video format
In the supplementary videos (BlurHandNet.mp4),

we visualize the recovered 3D hand mesh sequence as video
clips. In the video, we note that the left part is the input
blurry hand image, and the right part is the results from our
BlurHandNet. We further note that we adopt linear interpo-
lation to smooth the motion, and motion order is determined
in the order of VE1, VM, and VE2.

The video shows that our BlurHandNet outputs robust
3D hand meshes from challenging blurry hand. Moreover,
our BlurHandNet successfully estimates the motion in the
blurry hand by performing temporal unfolding through the
proposed Unfolder. Compared to the previous methods,
which output the mesh in the static scene, our BlurHandNet
gives more accurate and comprehensive results from blurry
inputs, including motion information.

S2. Statistics on the BlurHand dataset
In Table S1, we report the detailed number of training

samples. We note that the right and left hands are evenly
distributed in the BlurHand. In Figure S1, we further re-
port additional measurements, namely joint motion mag-
nitude, to present the statistics on the blur strength of our
BlurHand. In detail, we first prepare five sequential sharp
frames, which construct a single blurry frame in our Blur-
Hand. Then we calculate the 2D joint distance between two
adjacent sharp frames using the GT joint positions. Finally,
we add all distances for each joint, which we denote as joint
motion magnitude. We note that the large joint motion mag-

Split
BlurHand

Left hand Right hand
Train 85,380 83,659
Test 17,143 16,914

Table S1. Number of blurry hand image in our BlurHand. We
count both if the image contains both hands.

(a) Train set (b) Test set

Figure S1. Statistics on blur strength of the presented Blur-
Hand. On average, the joint motion magnitude from the train and
test set are 16.9 and 17.8, respectively.

nitude means a strong blur exists in hand. Our BlurHand
contains samples with various joint motion magnitude in
both the train and test sets.

S3. Results from various deblurring methods

In Tables 2 and 3 in our main manuscript, we com-
pared our BlurHandNet with the combination of state-of-
the-art 3D hand mesh estimation methods [4–6] and off-
the-shelf deblurring method [1]. In Table S2, we addi-
tionally compare the results from another widely used de-
blurring method, DeepDeblur [7], as the final mesh esti-
mation results might be dependent on the performance of
deblurring methods. Please note that NAFNet [1] is a de-
blurring method that we used in the main manuscript. Our
BlurHandNet still outperforms the case when we use Deep-
Deblur [7] as the deblurring method. The results again
demonstrate that utilizing temporal information is useful
rather than simply adopting deblurring methods.



Deblurring
Deblur Unfolder KTFormer

MPJPE
methods initial middle final

DeepDeblur [7]
✓ ✗ ✗ - 18.03 -
✓ ✓ ✓ 19.24 18.04 19.27

NAFNet [1]
✓ ✗ ✗ - 17.28 -
✓ ✓ ✓ 18.95 17.28 19.10

None ✗ ✓ ✓ 18.08 16.80 18.21

Table S2. Comparison results on various deblurring meth-
ods [1,7]. Instead of adopting deblurring methods, our BlurHand-
Net (last row) utilizes temporal information from a blurry image.

S4. Training details
BlurHandNet. We use Adam optimizer [2] with a batch
size of 48 for training our BlurHandNet. The initial learning
rate is set to 1 × 10−4 and reduced by a factor of 10 at the
10th and 12th epochs. The proposed network is trained for
13 epochs and takes about 5.7 hours using two NVIDIA
2080 Ti GPUs. All other details will be available in our
codes.
State-of-the-art models. For training the state-of-the-art
3D hand mesh estimation networks [4–6] and deblurring
networks [1] on BlurHand, we follow their official training
instruction. In addition, we employ the authors’ official pre-
trained weight in training deblurring methods [1] for easier
optimization.

S5. Additional qualitative results
Effectiveness of the BlurHand. In Figure S3, we provide
additional qualitative results on YT-3D [3]. We note that
training the model on our BlurHand (column (e) in the Fig-
ure S3) is significantly helpful in dealing with the in-the-
wild blurry hand images compared to the cases using sharp
images and deblurred images (column (c) and (d) in the Fig-
ure S3). The results justify the necessity of our BlurHand
when handling the blurry hand.
Visual comparison on BlurHand. In Figure S4, we
present additional comparison results on BlurHand. Com-
pared to the previous state-of-the-art methods [4, 5], our
BlurHandNet reconstructs more accurate 3D hand meshes
by exploiting temporal information.

S6. Discussion
Limitations and future works. While various types of im-
age degradations are prevalent in real-world hand images,
e.g., low-resolution, noise, and low illumination, we espe-
cially focus on hands with blur artifacts. Figure S2 shows
that BlurHandNet produces not robust results when the in-
put image is low-resolution with blur, which should be con-
sidered in our future works.
Societal impacts. Our BlurHand and BlurHandNet sug-
gest a new and necessary research direction toward real-
world applications, the robust 3D hand mesh estimation

(a) Input image (b) BlurHandNet (Ours)
(blurry and low-resolution) AAAAAAAAAAAAAAAAAA

Figure S2. Failure cases. Our BlurHandNet produces less accu-
rate results when inputs contain multiple complex degradations.

from blurry images. In particular, our method can be useful
for AR/VR as people often move hands fast, which causes
motion blur of hands.



(a) Blurry image (b) Deblurred image (c) IH2.6M + YT3D (d) BH+D + YT3D (e) BH + YT3D

Figure S3. Effectiveness of the presented BlurHand. The captions below figures describe training sets used to train 3D hand mesh
estimation networks. The notation D represents that the network is trained on deblurred BH and tested on (b).



  Front view Other view  Other view  Front view   Front view Other view   Front view Other view

(a) Input image (b)  GT  (c) METRO (d) Pose2Pose (e) BlurHandNet (Ours)

Figure S4. Visual comparison of the proposed BlurHandNet and state-of-the-art 3D hand mesh estimation methods [4, 5] on
BlurHand. We note that all the methods are trained on BlurHand.
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