Temporal Interpolation Is All You Need for Dynamic Neural Radiance Fields
Supplementary Materials

Sungheon Park, Minjung Son, Seokhwan Jang, Young Chun Ahn, Ji-Yeon Kim, Nahyup Kang
Samsung Advanced Institute of Technology (SAIT)

{sh2019.park, minjungs.son, swan.jang, ychun.ahn, jiyeon3l.kim, nahyup.kang}@samsung.com

A. Network Details

The detailed structures of the networks for the neural and
grid representation are explained in this section.

A.1. Neural Representation

The detailed network structure of the neural representa-
tion is illustrated in Fig. 1. Input 3D position x and the
embedding vector z; are encoded via the positional encod-
ing used in [1]. We set the maximum frequency levels of
the positional encoding to 8 for x and 3 for z;. We adopted
windowed positional encoding from [3], which weights the
frequency bands of the positional encoding using a window
function.

After the feature vector v(x, t) is extracted, it is fed into
the template NeRF which consists of 8-layer MLPs with
hidden size of 256 with ReLU activations, and one addi-
tional layer with hidden size of 128 for RGB color estima-
tion. View direction and optional appearance code are also
used as inputs for the RGB color estimation. We used the
appearance code only for the DyNeRF dataset where an em-
bedding vector is assigned to each camera.

Our implementation of the neural representation is based
on the code from [3] which is built using JAX [5].

A.2. Grid Representation

As depicted in Fig. 2, the NeRF MLP of the grid rep-
resentation consists of 3-layer network with hidden size of
128 for density estimation, and one additional layer with
hidden size of 128 for RGB color estimation. View di-
rection is encoded using spherical harmonics of degree 4
following the implementation of [2]. ReLU activations are
used in all layers.

Our implementation of the grid representation is based
on the code from [2] which is implemented using C++ and
CUDA.

B. Training Details

Hyperparameter settings and training details for each
dataset are described in this section. For all experi-

Density o

RGB color ¢
Zf

View direction d

Appearance code

.. ig
=

Figure 1. The network architecture of the neural representation.
Input 3D position (x) and the embedding vector for time ¢ (z:) are
fed to the network after the positional encoding [1] (77, and ~:).
The template NeRF consists of 8 layers of MLP with hidden size
of 256 and one additional layer for RGB color estimation.

Density o

RGB color ¢

4D hash grids
View direction d

Figure 2. The network architecture of the grid representation. The
extracted feature vector is fed to the template NeRF that has 3 lay-
ers of MLP with hidden size of 128 and one additional layer for
RGB color estimation. View direction d is encoded using spheri-
cal harmonics as in [2].

ments, network parameters are optimized using ADAM op-
timizer [6].

B.1. Neural Representation

We maintained two template NeRFs for optimization as
in [1], one of which is trained from the sampled points that
uses stratified sampling, and the other is trained using im-
portance sampling for ray sampling strategy. We used 8
V100 GPUs or 4 A100 gpus to train the neural representa-
tion model. Each minibatch contains inputs that are sam-
pled from 6,144 rays. It took approximately one day for
training in D-NeRF and HyperNeRF datasets, and two days

in DyNeRF datasets.

D-NeRF For D-NeRF datasets, initial learning rate is set
to 0.002 and exponentially decayed to 0.0002 for 300,000
iterations. All training images are resized to 400 x 400 fol-
lowing the implementation of [4]. The smoothness weight
Ads set to 0.01.

HyperNeRF For HyperNeRF datasets, initial and final
learning rate are set to 0.001 and 0.0001 respectively. The
smoothness weight A is set to 0.001. Training images are
scaled by 0.25 and 0.5 for vrig dataset and interp dataset
respectively.

DyNeRF The training images are downsized to 1K resolu-
tion (1000 x 750). We set the initial and final learning rate
to 0.001 and 0.00001 respectively. The smoothness weight
A is set to 0.01, and the network is optimized for 600,000
iterations.

B.2. Grid Representation

The initial learning rate is set to 0.01 and is multiplied by
0.33 for every 10,000 iterations starting 20,000 iterations.
As in [2], we maintain the occupancy grid which is used to
speed up training and rendering. To save the occupancy in-
formation of a whole sequence to a single occupancy grid,
we assign random time frame value in addition to the in-
put 3D points when querying the occupancy of the grid.
Moreover, we adjust the decay weight of the values in the
occupancy grid to 0.99 and set the threshold for culling to
0.0001.

C. Derivation of the Smoothness Term

We elaborate on the derivation of the smoothness term
used in the grid representation, which is discussed in Sec-
tion 3.3 of the main text. Applying the smoothness con-
straint to adjacent frames, as in the neural representation,
the smoothness term becomes

Ly = ||va(x,t) — va(x,t + 1)”% (1)

Here, we assume that x is located on the 3D grid point with-
out loss of generality, and we assume that the time frames
t and t + 1 lie between two grid points of time ¢, and ¢,
(ta < tp). Then, the output feature vector becomes a linear
interpolation of the feature vectors of the two grid points,
ie.,

va(x,t) = sha(x,ta) + (1 — s)ha(x, tp), 2)

where s = 2=t Changing ¢ from ¢ to ¢ + 1 makes the

weight s decrease. Let ¢ denote the decrease in the weight,
1.e.,

lfb—(t—l—l)
ty — tq

ty —t 1
- = —s—c (3)
tb_ta tb_ta

_1
tp—tg "

Then, the feature vector at time ¢ + 1 can be calculated

, where € =
as
va(x,t+1) = (s—€)ha(x,ta) + (1 —s+e€)ha(x,tp). (4)
Substituting Eq. (2) and Eq. (4) to Eq. (1) yields
Ls = €[lha(x, ta) — ha(x,1)]3. 5)

When the grid resolution is fixed, € is proportional to ni

Hence, we can obtain the smoothness term as the following
form:

1
Ly = —5 [lha(x,ta) — ha(x, t)|3- (6)
ny

In the case that ¢ and ¢ + 1 do not belong to the same grid,
similar derivation reach to the same conclusion as Eq. (6)
except that ¢, and t¢; are not adjacent but the closest grid
points that satisfies t, <t < t+4 1 < ¢;. In practice, impos-
ing the smoothness term only on adjacent grids is enough
to improve performance. We applied Eq. (6) to every grid
point that is used for feature vector calculation during the
training, so the smoothness term can be assigned to a single
grid point multiple times in a single iteration.

D. Evaluation Details

LPIPS metric may vary depending on which backbone
network is used. We reported LPIPS using VGGNet for D-
NeRF dataset and AlexNet for DyNeRF dataset. FLIP is
calculated using weighted median for the DyNeRF dataset.
We inferred those settings by implementing previous works
or using publicly available code, and comparing them with
our method.

When evaluating inferp dataset, the feature vector v; is
interpolated instead of interpolating the embedding vector
z;. Since temporal interpolation of feature vectors is re-
peatedly occurred during the training, it is natural to inter-
polate the feature vectors rather than the embedding vectors
to generate features of intermediate frames. This strategy
improves overall performance by 0.5dB in PSNR compared
to the embedding vector interpolation strategy.

In all experiments, network models are optimized and
evaluated per sequence except the flame_salmon sequence
in DyNeRF dataset which is separated to four sequences
of 100 frames to have the same frames with the other se-
quences in the dataset. We provide detailed per-scene quan-
titative results for each dataset. From Tab. 1 to Tab. 3,
the per-sequence performance of the neural representation
models are presented. Tab. 4 represents the per-sequence
results of the grid representation on D-NeRF dataset.

Sequence PSNR SSIM LPIPS AVG

HellWarrior 2540 0.953 0.0682 0.0349
Mutant 3470 0.983 0.0226 0.0100
Hook 28.76 0.960 0.0496 0.0237
BouncingBalls | 43.32 0.996 0.0203 0.0040
Lego 25.33 0.943 0.0413 0.0307
T-Rex 33.06 0.982 0.0212 0.0112
StandUp 36.27 0.988 0.0159 0.0074
JumpingJacks | 35.03 0.985 0.0249 0.0098
Mean 3273 0974 0.0330 0.0142

Table 1. Per-sequence quantitative results of the neural represen-
tation model on D-NeRF dataset.

vrig interp

Sequence PSNR SSIM | Sequence PSNR SSIM
Broom 20.48 0.685 | Teapot 26.53 0.933
3D Printer 20.38 0.678 | Chicken 27.99 0.940
Chicken 21.89 0.869 | Fist 29.74 0.933
Peel Banana 28.87 0.965 | Fist 29.74 0.933

Slice Banana 28.39 0.923

Lemon 31.31 0.948
Mean 2435 0.866 | Mean 28.67 0.940

Table 2. Per-sequence results of the neural representation model
on HyperNeRF dataset.

Sequence PSNR LPIPS FLIP

coffee_martini 2748 0.1143 0.1456
cook_spinach 33.12 0.0699 0.1262
cut_roasted_beef | 33.63 0.0695 0.1221
flame_salmon_1 | 27.66 0.1127 0.1468
flame_salmon_ 2 | 26.91 0.1239 0.1464
flame_salmon_3 | 27.05 0.1191 0.1558
flame_salmon 4 | 26.72 0.1410 0.1493
flame_steak 33.11 0.0560 0.1398
sear_steak 3324 0.0576 0.1396
Mean 29.88 0.0960 0.1413

Table 3. Per-sequence quantitative results of the neural represen-
tation model on DyNeRF dataset.

E. Ablation Studies
E.1. Neural Representation

To find the optimal structure of the network, we con-
ducted experiments on various settings of the neural repre-
sentation models. We changed number of MLPs for feature
extraction, number of levels, and application of the smooth-
ness term. All models are tested on 3dprinter sequence of
vrig dataset, and the results are shown in Tab. 5. Two-level
architecture with ng = 5, n; = 20 showed the best per-
formance. The performance becomes worse in three-level
architectures. Thus, using large number of networks does
not guarantee performance improvements. In the case that

Sequence PSNR SSIM LPIPS AVG

HellWarrior 2433 0936 0.1088 0.0466
Mutant 32.04 0977 0.0374 0.0152
Hook 27.63 0.949 0.0859 0.0322
BouncingBalls | 34.52 0.973 0.0633 0.0154
Lego 25.16 0.935 0.0618 0.0364
T-Rex 31.21 0974 0.0445 0.0176
StandUp 3329 0.983 0.0315 0.0125
JumpingJacks | 30.51 0.968 0.0590 0.0211
Mean 29.84 0.962 0.0615 0.0230

Table 4. Per-sequence quantitative results of the grid representa-
tion model on D-NeRF dataset.

Method ng ni N9 | Smooth | PSNR MS-SSIM
NeRF + Time | - - - - 21.05 0.847
Ours-NN 2 - - X 20.64 0.839

2 5 - X 21.06 0.849

5 20 - X 21.15 0.850

5 20 - (0] 21.73 0.864

2 10 25 (@) 21.15 0.849

5 20 50 (0] 21.12 0.848

Table 5. Ablation studies on network architectures of the neural
representation. 3dprinter sequence from vrig dataset is used for
evaluation.

the time slot between MLPs is too small, the network is
optimized in only a few frames which prevents from learn-
ing meaningful features while imposing additional compu-
tational burden.

E.2. Grid Representation

We examined the effect of hash table size and num-
ber of grid levels. When small number of grid levels are
used, as showin in Fig. 3, the model converges faster, but
shows slightly worse performance. Optimal performance is
achieved when number of levels are set to 12. On the other
hand, the performance tends to degrade when large hash
table is used as observed in Fig. 4. Not only for slow train-
ing speed, large hash table seems also inefficient to learn
compact representations of the scene although further study
including various real-scene data would be needed.

E.3. Effectiveness of the Static Features

We showed qualitative results that validate the effective-
ness of the static features in Fig. 5. While one may think
the quantitative improvement for the neural representation
seems marginal, as it can be seen in Fig. 5 left, the model
trained with static feature recovers fine details (e.g. the tex-
ture of a stone and dirt). For the grid representation (Fig. 5
right), severe artifacts exist in static regions when only dy-
namic features are used.

Number of Grid Levels

=

PSNR (DB)
8 2
[R R

-

&)
~
n

[
3

—8— Lv=4
= Lv=8

Lv=12 []
—O—Lv=16

)
.
o

ISy
=

| > 3 J s

Training Time (min)
Figure 3. The performance of the grid representation model when
different number of levels are used.

Hash Table Size
ol T T T

1 15 2 25 3 35 4 45 5

Training Time (min)
Figure 4. The performance of the grid representation model with
various hash table size.

F. Additional Qualitative Results

We conducted an additional experiment on the sequence
containing significant topological variations, split-cookie
and espresso from the HyperNeRF dataset. Figure 6 shows
qualitative results of the neural representation model on the
sequence. We also included the depth estimation results at
the corner of each image to ensure that 3D geometry is cor-
rectly estimated. Our method does not suffer from topolog-
ical variations since it does not have any assumption about
the shape topology, which verifies the flexibility of our ap-
proach.

Lastly, we provide a video clip which summarize qual-
itative results of our method. We demonstrate the render-
ing results from novel viewpoints that are not included in
training or testing data. First, rendered images of D-NeRF
dataset using the neural representation models are shown.
Next, rendered images of HyperNeRF dataset is shown and
compared to the results from HyperNeRF. Then, we demon-
strate the result on DyNeRF dataset. For the grid represen-
tation, we first show training progress of the grid represen-

,v‘i & ;

(a) dynamic only

(d) dynamic+static

(c) dynamic only

Figure 5. The effect of the static features on the neural representa-
tion ((a),(b)) and the grid representation ((c),(d)).

tation model on D-NeRF datasets. It can be observed that
the grid representation model can learn rough 3D structures
within 30 seconds. Lastly, we demonstrate interactive demo
which performs real-time rendering using the model trained
for 8 minutes.

References

[1] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. Communications of the ACM, 65(1):99-106, 2021.
1

[2] Thomas Miiller, Alex Evans, Christoph Schied, and Alexan-
der Keller. Instant neural graphics primitives with a multires-
olution hash encoding. ACM Trans. Graph., 41(4):102:1-
102:15, July 2022. 1,2

[3] Keunhong Park, Utkarsh Sinha, Peter Hedman, Jonathan T
Barron, Sofien Bouaziz, Dan B Goldman, Ricardo Martin-
Brualla, and Steven M Seitz. Hypernerf: A higher-
dimensional representation for topologically varying neural
radiance fields. arXiv preprint arXiv:2106.13228, 2021. 1

[4] Albert Pumarola, Enric Corona, Gerard Pons-Moll, and
Francesc Moreno-Noguer. D-nerf: Neural radiance fields
for dynamic scenes. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
10318-10327,2021. 2

[5] James Bradbury, Roy Frostig, Peter Hawkins,
Matthew James Johnson, Chris Leary, Dougal Maclau-
rin, George Necula, Adam Paszke, Jake VanderPlas, Skye

Figure 6. Qualitative results of the neural representation model on the sequences containing topological variations.

Wanderman-Milne, and Qiao Zhang. JAX: composable
transformations of Python+NumPy programs, 2018. 1

[6] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 1

