
A. Supplementary material

A.1. Implementation details

Dataset preparation. For CUB [52], we use the seg-
mentation masks and poses from CMR [27] estimated us-
ing structure-from-motion. These poses adopt a weak-
perspective camera model, which we keep as-is (our neural
renderer implementation supports multiple projection mod-
els). Similarly, for P3D Cars [59], we use poses from CMR
but obtain the segmentation masks using Mask R-CNN [21]
as was done in previous work. Additionally, we upgrade
its camera projection model to a full perspective model by
freezing the rotations and re-estimating all the other pa-
rameters using the procedure described in the next para-
graph. For ImageNet, we estimate poses from scratch using
the same procedure and predict segmentation masks using
PointRend [32]. Additionally, we augment all real datasets
mentioned so far with horizontal flips. We do not augment
synthetic datasets (CARLA [11] and ShapeNet [7]).
Pose estimation and parameterization. While most neu-
ral renderers adopt camera-to-world view matrices (plus fo-
cal length), this representation is not necessarily the best
for optimization purposes. Among various issues, we men-
tion the necessity to enforce orthogonality constraints in
the rotation matrix, a dependency between rotation and
translation (which can be solved by switching to a world-
to-camera representation), and an entanglement between
translation and focal length (ideally, as depth increases, the
learning rate for the translation needs to be amplified in or-
der to keep a linear behavior in projective space). There-
fore, for all our steps where pose optimization is involved
(namely, the initial data preparation and the hybrid inversion
step), we adopt a custom pose parameterization that tackles
these issues and is easier to optimize, while being fully dif-
ferentiable and convertible to view matrices for use in neu-
ral renderers. We also make sure that our neural renderer
is fully differentiable w.r.t. the pose, even when coarse-fine
importance sampling is used and view-dependent effects are
enabled, as we found that existing implementations present
gradient detachments in some nodes of the pipeline.

Our pose representation can be regarded as an augmen-
tation of a weak-perspective camera model, and describes
a world-to-camera transformation parameterized by a rota-
tion q ∈ R4 (a unit quaternion), a screen-space scale s ∈ R,
a screen-space translation t2 ∈ R2, and a perspective dis-
tortion factor z0 ∈ R. At runtime, we derive the focal length
f = 1 + exp(z0) and the 3D translation t3 = [t2/s; f/s].
Such a parameterization is equivalent to a full-perspective
model, but results in more “linear” optimization dynamics.

For the datasets where we estimate the poses ourselves
(ImageNet and, partially, P3D Cars), we use the template-
based pose estimation technique described in [44] with our
pose parameterization.

SegFormer

128x128, 3ch

32x32, 512ch

Up Bilinear 4x
Conv2D 3x3, 512ch

ReLU
Conv2D 3x3, 512ch

Sigmoid
Conv2D 3x3, 3ch Conv2D 3x3, 1ch

ReLU

Global AvgPool

Conv2D 3x3, 512ch
ReLU

Linear, 512ch
ReLU

Linear, 512ch
Leaky ReLU (a=0.2)

Input RGB Image

(pre-segmented)

Canonical
map

Figure 10. Architecture of the encoder used for bootstrapping the
latent code and pose estimation. Note that we include a Leaky
ReLU activation in the final layer of the latent code regressor,
which mimics the behavior of the mapping network.

Unconditional generator. We train the unconditional gen-
erator for 300k iterations, except for CUB and ImageNet
elephants, where we use 200k. Similarly, we adopt R1 reg-
ularization on all datasets with γ = 5, except on elephants
where we use γ = 10. Optimizer, learning rate, and batch
size are the same as in [5]. We found it beneficial for sta-
bility to warm up the learning rate of both the generator and
discriminator, starting from 1/10th of the specified value
and linearly increasing it over 2000 iterations.

As in [5], we condition the discriminator on the pose, but
we nonetheless observe that all our models converge even
without such conditioning, although this sometimes leads to
surface artifacts (such as objects appearing concave). On all
datasets except ShapeNet, we enable adaptive discrimina-
tor augmentation (ADA) [28], which reduces discriminator
overfitting by enhancing its input images with differentiable
augmentations. We only adopt geometric transformations
(scale, translation, rotation). However, we observe that the
implementation of ADA in [5] is not 3D-aware, as the aug-
mentations are only carried out in image space, while the
discriminator is conditioned on the original camera pose,
leading to artifacts. We implemented a 3D-aware version
of ADA where both the image and camera pose are aug-
mented with the same transformation, and the discriminator
is conditioned on the augmented pose.
SDF details. As for the SDF representation [65], the
volume density is modulated by two learnable parameters
α, β > 0. Unlike [65], which ties α = β (according to
Equation 1), we found it helpful for convergence to learn
them separately. We initialize α = 1 and β = 0.1, and

Figure 11. Additional qualitative results produced by our method on ImageNet (top rows) and ShapeNet Cars (last row).

clamp their lower bound to 10−3 for stability during train-
ing. Before training the unconditional model, we initialize
the SDF to a unit sphere through optimization. We pre-train
the model for 1000 iterations using the following loss:

LSDF = Ex

[(
d(x)− (‖x‖ − 1)

)2]
. (3)

A visualization of the SDF can be seen in Fig. 13 (right).
For the Eikonal loss, we use a weight of 0.1 as recom-
mended by [65].
View-dependent effects. We also incorporate the abil-
ity to efficiently model view-dependent effects. The view
direction of each pixel (which is constant across depth,
and can therefore be computed only once per pixel) is
processed through a small feed-forward network to pro-
duce a 32-dimensional vector, and summed with another
32-dimensional vector coming from the triplanar decoder.
The result is then processed through a Leaky ReLU acti-
vation and another linear layer to produce the final output.
This late fusion strategy ensures that memory consumption
is minimal. We enable this feature only on CARLA, as
ShapeNet does not have any specular reflections and the
other datasets are too small to properly disentangle appear-
ance and specular effects.
Bootstrapping and pose estimation. For the encoder
architecture, we adopt SegFormer B5 [60], a recently-
proposed transformer-based backbone for semantic seg-
mentation. The output feature map from the backbone is
connected to two heads: a fully-connected one that re-
gresses the latent code w and a convolutional one that re-
gresses the canonical map and the associated segmentation
mask. The detailed architecture is shown in Fig. 10. We
initialize the backbone using ImageNet weights and train

the model end-to-end for 120k iterations with a batch size
of 32 samples, using Adam optimizer. We adopt an initial
learning rate of 6e-5, which we decay to 6e-6 after 60k it-
erations. As for the losses, we use a simple mean squared
error (MSE) loss for the latent code (Llatent), an L1 loss for
the segmentation mask (Lmask), and a masked L2 loss (with
square root) for the canonical map (Lmap), i.e. a rotation-
invariant version of the L1 loss, for better robustness to ar-
tifacts coming from the generator:

Llatent = ‖ŵ −w‖2, (4)

Lmask =
1

WH

W∑
i=1

H∑
j=1

|m̂i,j −mi,j |, (5)

Lmap =
1

WH

W∑
i=1

H∑
j=1

mi,j‖p̂i,j − pi,j‖, (6)

Ltotal = Llatent + Lmask + Lmap (7)
where ŵ is the predicted latent code, p̂i,j is the predicted
canonical map at the i, j image-space coordinates (a 3D
vector for each position), p is the ground-truth one, m̂ is
the predicted mask, and m is the ground-truth mask. This
contrasts NOCS [53], which frames the task as a classifi-
cation problem using quantized coordinates. For inference,
the regressed canonical map is thresholded using the pre-
dicted mask, converted to a dense point cloud, and used as
the input for SQPnP [51], a fast PnP solver that retrieves
a global optimum (we use the implementation in OpenCV
[3]). Since SQPnP – as most PnP methods – requires the fo-
cal length to be pre-determined, we select 10 representative
focal lengths from the training set (one for each 10th per-

centile), run the algorithm for each, and select the solution
with the lowest reprojection error.
GAN inversion. For the hybrid inversion step, we use
Adam optimizer [31] with a base learning rate of 0.02, and
optionally amplify the learning rate of the latent code w
by a gain factor (as reported in the individual experiments).
We additionally set β2 = 0.95 for a faster reaction. We do
not dynamically adjust the hyperparameters throughout the
procedure. For the pose, we use our previously-described
parameterization as this results in better optimization dy-
namics. We optimize the following objective:

min
w,q,s,t2,z0

1

K

K∑
k=1

LPIPS(c
[k]
pred, c

[k]
gt) , (8)

where cpred represents the predicted image, cgt is the
ground-truth one, k is the augmentation index (we use
K = 16 augmentations), and the LPIPS operator [70] de-
scribes the distance between the VGG embeddings of the
two images. After each iteration, we reproject the pose pa-
rameters onto the valid set of constraints (q unit length).
Evaluation details. For the evaluation on real datasets
(P3D, CUB, ImageNet), we follow the protocol of [44, 45]
and evaluate the FID on an empty background (value = 0,
i.e. gray). All scores are evaluated at 128 × 128, using an-
tialiased resampling (also referred to as area interpolation)
if resizing is needed, as the FID is sensitive to this aspect.
For the approaches we compare to, we compute their FID
under the same settings by modifying their public imple-
mentations.

A.2. Additional results

A.2.1 Ablation experiments

Encoder-based architecture. For our next experiment,
we build an encoder-based variant of our architecture and

0° 5° 10° 20° 45°
Average pose noise

16

17

18

19

PS
N

R
 (n

ov
el

 v
ie

w
s)

Hybrid (ours)
Bootstrap only (ours)
Encoder-based

0 100 200 300
Inversion steps (no bootstrapping)

14

16

18

20

Ours Full
Baseline EG3D

Figure 12. Additional ablations on ShapeNet Chairs, where we
evaluate the PSNR on novel views from the test set. Left: com-
parison of our hybrid inversion approach (and initial bootstrapping
without refinement) to an encoder-based baseline under simulated
pose perturbations. Right: inversion on a vanilla EG3D backbone
vs our proposed architecture. Since the goal of this experiment
is to evaluate only the impact of the unconditional generator, we
start from an average latent code (i.e. no bootstrapping) and use
the ground-truth pose.

switch to a conditional GAN setting. Instead of using a
mapping network to map z to w, we learn a convolutional
encoder that takes a 2D image as input and directly predicts
w. We also experiment with various supervision strategies,
including a dual discriminator (an unconditional one that
discriminates random views plus a conditional one that dis-
criminates the input view), and a single unconditional dis-
criminator with an L1 or MSE loss to fit the input image,
as in Pix2NeRF [4]. Based on early experiments, we found
that the dual discriminator approach yields the best results
(as it does not require balancing the losses), and we use
this strategy throughout our ablations. Moreover, for a fair
comparison, we use the same backbone for the conditional
(encoder-based) and unconditional (inversion-based) exper-
iments.

Encoder- vs inversion-based baselines. In Fig. 12 (left),
we compare our hybrid inversion approach to the afore-
mentioned encoder-based baseline. We conduct this exper-
iment on ShapeNet Chairs, where exact ground-truth poses
are known. In this setting, we randomly perturb individ-
ual poses by injecting noise at different levels (from 0◦ to
45◦) without altering the overall pose distribution, and study
which approach is more robust to inaccurate poses as noise
increases. Importantly, for a fair comparison to encoder
methods (which are feed-forward), we also include a boot-
strap only baseline where we do not refine the initial guess
of our solution. We immediately observe that our boot-
strap only baseline achieves a higher PSNR compared to
the encoder-based approach. Furthermore, the performance
of our approach decreases gracefully as noise increases,
whereas with the encoder-based method we can observe a
sharp degradation as early as 5◦. Based on these findings,
we conclude that inversion-based approaches are more ap-
propriate for real datasets where poses are potentially inac-
curate, as these methods rely on the overall pose distribution
as opposed to the correctness of individual poses.
Impact of the backbone. In Fig. 12 (right), we assess the
impact of the backbone on the final reconstruction result.
We leave out some of our contributions (bootstrapping, pose

14 15 16
FID

19

20

21

PS
N

R

5x 5x

SDF
Baseline

Figure 13. Left: impact of the SDF representation on the inversion
dynamics (at gain 5x). As in Fig. 6, the analysis is carried out on
our larger P3D Cars test set. Right: spherical initialization of the
SDF and its evolution as training progresses.

estimation, and hybrid inversion) and purely focus on our
proposed backbone components (SDF, color mapping, op-
timized path length regularization, as well as the minor im-
provements over [5]). To this end, we conduct a vanilla
inversion experiments on ShapeNet Chairs, using ground-
truth poses and starting from the “average” latent code in
W . We compare our full backbone to a vanilla EG3D, and
observe an advantage when adopting our proposed changes.

SDF representation. Similar to Fig. 6, we conduct an anal-
ysis of the inversion dynamics with and without our pro-
posed SDF representation (Fig. 13). We find that the op-
timization dynamics are similar, but the SDF baseline gets
an FID boost owing to a better unconditional generator, in
addition to the other practical benefits (e.g. ability to easily
extract surface, normals, and mesh).

Color distribution disentanglement. To visually motivate
our color mapping approach, we show examples of color
disentanglement in Fig. 14. When our color mapping net-
work is used, the object identity is fully disentangled from
its color distribution. By contrast, attempting the same
on a vanilla EG3D architecture is unsuccessful, even when
adopting techniques such as style mixing.

Pose estimation. Pose prediction is a useful feature for
AR applications and real-world datasets, where ground-
truth poses are imprecise or not available. As such, it is
not meant to improve performance, as it actually makes the
learning task harder. Nonetheless, it is interesting to evalu-
ate its effect on quantitative metrics. In Table 4, we conduct
an ablation experiment on a dataset of real images (P3D
Cars) where we turn off pose prediction and use ground-
truth poses from the dataset (which are imprecise). As ex-
pected, we find that qualitative metrics (FID) are mostly un-
affected, whereas the IoU is degraded when switching to
poses from the dataset, regardless of whether inversion is
used. This confirms that, on real datasets such as P3D, in-
dividual poses are inaccurate, but our generative framework
is robust to them as it relies on the overall pose distribution.

Pascal3D+ Cars
IoU ↑ FID ↓

Ours (predicted poses) (N=0) 0.883 75.90 (15.08)
Ours (dataset poses) (N=0) 0.803 73.20 (16.39)
Ours (predicted poses) (N=30) 0.920 73.53 (14.36)
Ours (dataset poses) (N=30) 0.802 72.22 (15.10)

Table 4. Ablation experiment on pose prediction (P3D Cars
dataset). The first two rows are purely feed-forward-based, while
the remaining are inversion-based. In parentheses, we also report
the FID on our larger test set from ImageNet.

(b) Ours Full

(with color
network)

(a) Baseline

(no color
network)

Figure 14. Disentanglement of the color distribution from the ob-
ject identity. (a) In the baseline network without color mapping
(EG3D), we attempt to achieve disentanglement via style mixing,
i.e. we split the latent code w into two sections (before and after the
8th layer) and mix it between the two object instances. Although
this leads to some variation in color, we find that disentanglement
is not properly achieved. (b) With our color mapping technique,
color and object identity are fully disentangled. When two differ-
ent latent codes are combined, it is possible to “borrow” the color
distribution from another image in a realistic way.

A.2.2 Qualitative results

Additional qualitative results. Following the format in the
main text, we report extra qualitative results for all datasets
in Fig. 11 (novel results on ImageNet and ShapeNet Cars),
Fig. 15 (ShapeNet Chairs & CARLA, and comparison to
Pix2NeRF [4]), and Fig. 19 (CUB and P3D Cars, including
comparison to prior work).
Conversion to triangle mesh. Our adoption of an SDF rep-
resentation allows us to easily extract a triangle mesh from
a generated object (Fig. 16). We first quantize the SDF to
a fixed-size grid, and then extract its 0-level set (i.e. zero-
crossings) via marching cubes [37], obtaining a set of ver-
tices and triangles. Finally, we sample colors from the radi-
ance field by querying the network at the locations specified
by the vertex positions.

Input Ours Pix2NeRF

Figure 15. Additional qualitative results on synthetic datasets (test
set of ShapeNet Chairs & CARLA) and side-by-side comparison
to Pix2NeRF [4] on input and random views at 128×128.

NeRF-rendered

Detail

W
ire

fra
m
e

W
ire

fra
m
e

Figure 16. Extraction of a colored triangle mesh from an SDF.
On the left, we show a car rendered using a neural renderer as
well as zoomed viewpoint. On the right, we show the correspond-
ing triangle mesh (including wireframe visualization) at different
quantization steps.

Demo video. As part of the supplementary material, we
include a video that shows additional examples of recon-
structions. We break down each result into (i) prediction of
the canonical map, (ii) initial pose estimation and bootstrap-
ping of the latent code, (iii) refinement via hybrid inversion,
and (iv) 360◦ animation of the reconstructed object and its
surface. All samples are random (no selection is done) and
failure cases are shown as well.

A.2.3 Limitations and failure cases

In this section, we highlight the most common failure
modes of our method and attempt to categorize them in
common patterns.
Shape artifacts. In some cases, we observe that recon-
structed shapes present some artifacts, even though the ap-
pearance of the object looks correct when rendered. For
instance, in animals, features such as the beaks of the birds
are sometimes bifurcated (Fig. 17, top). We attribute this
issue to a lack of density in some areas of the pose distri-
bution of the dataset, e.g. most birds are observed from the
side, but rarely from the front. On some small datasets such
as zebras and elephants – which comprise only 1.7k and
1.4k images respectively – we also observe concavities (see
Fig. 9 in the main text), and in the specific case of zebras, a
failure to disentangle the stripes from the shape. We expect
these entanglement issues to improve with larger datasets.
Pose estimation errors. More rarely, failures are caused by
inaccurate pose estimation. If the initial estimated pose is
too far from the true one, the optimizer can get stuck in a lo-
cal minima and cause the reconstructed surface to become
distorted (Fig. 17, bottom). We also notice that pose es-
timation is more challenging on examples with “extreme”
postures, e.g. open wings in birds and head flexion in ze-
bras, but also observe that many of these cases are handled
correctly (Fig. 18). Most likely, the failure cases are due
to these poses being underrepresented in the unconditional
generator, and are not due to a limitation of the pose esti-
mation framework itself.

Figure 17. Most common modes of failure on CUB Birds and P3D
Cars. On CUB (first two rows), we sometimes observe a “split
beak” phenomenon. On P3D (last two rows), in the rare instances
the pose is estimated imprecisely, the optimizer can get stuck in a
local minima and lead to a distorted reconstruction.

Input
Predicted

canonical map Output
Novel view with
camera direction

Figure 18. Our pose estimation approach can correctly handle “ex-
treme” postures (top and middle), although some failure cases are
still possible (bottom).

Incomplete inversion. For some hard examples, the en-
coder might return an initial solution which is far from the
optimum, which in turn needs to be optimized for longer
to correctly match the input image. Since we adopt a fixed
schedule (i.e. the same number of optimization steps for all
images), some images may only be partially inverted. As
part of future work, this issue could be mitigated by using
an adaptive optimization schedule that varies for each sam-
ple.

A.3. Negative results

Throughout the development of our method, we exper-
imented with various techniques drawing inspiration from
the literature on GANs and representation learning. To
guide further research in this area, we provide a list of ideas
we explored but did not work out as expected.

• We initially experimented with various NeRF representa-
tions, including MLP-based, voxel-based, and triplanar-
based. We eventually settled with the triplanar represen-
tation of [5] since it was as expressive as the other ones
but more efficient.

• Our initial attempts at solving the reconstruction task
used an encoder-based approach with multiple discrim-
inators. While this was appropriate for synthetic data, we
quickly found out that it was not robust on real datasets
with imprecise poses, which is also one of the main mo-
tivating factors for our approach. Based on the intuition
that the issue might have been caused by the limited ex-
pressivity of the encoder, we tried to replace the encoder
with an embedding layer that learned a different latent
code for each instance (similar to [26, 47], but using a
GAN framework with multiple discriminators), essen-
tially decoupling the impact of the encoder architecture
from that of the learning framework. In this setting, we

found that the issue was not resolved, which prompted us
to explore other ideas.

• Before settling with our hybrid inversion framework, we
also explored techniques from the representation learning
literature, such as bidirectional GANs (BiGAN) [10]. In
this setting, the encoder is not connected to the generator
and the learning signal comes from a joint discriminator.
Our expectation was that this setting would make the ap-
proach less reliant on precise poses, but we found that the
reconstructions did not mirror the input images closely
enough.

Input Ours MeshInv. UMR U-CMR CMR

Surface
(Ours)

Input Ours U-CMR CMR

Figure 19. Additional qualitative results and side-by-side comparison on the test set of CUB (left) and Pascal3D+ Cars (right), at 128×128.
The first row of each sample is rendered from the input viewpoint, whereas the second row illustrates a random view.

	. Supplementary material
	. Implementation details
	. Additional results
	Ablation experiments
	Qualitative results
	Limitations and failure cases

	. Negative results

