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Abstract

In this supplementary PDF, we first analyze the sensitiv-
ity of batch size to the model performance, then give details
of training experiments, including network configurations
and choices of hyper-parameters, and finally provide ad-
ditional qualitative samples on different datasets, namely
CIFAR-10, STL-10, CelebA-HQ (256, 512 & 1024), and
LSUN-Church.

1. Sensitivity analysis of training batch size

We recognize that training batch size is a critical as-
pect affecting the final performance. Large batch size often
results in worse performance, with the compensation be-
ing training time. Here, we carefully analyze the effect of
training batch size on the model performance measured by
Frechet inception distance (FID) [1] (depicted in Fig. 1).

As expected, the model trained with batch size 64 con-
sistently performs better than the model trained with batch
size 128, as illustrated via the training curves on LSUN-
Church in Fig. 1a. The gap is initially large during the first
100 epochs and then shrunk in the following epochs. How-
ever, the performance gap is still significant. The best FID
of the model with batch size 64 is 5.06, which is 0.6 points
lower than the best FID of the model trained on batch size
128. More importantly, our model outperforms DDGAN
(5.06 vs. 5.25) when using the same batch size of 64.

We further verify the effect of batch size to our trained
models on CelebA-HQ (256) with batch sizes 128 and 64.
As shown in Fig. 1b, the model trained with batch size 64
achieves a minimum FID of 5.93, which is 0.28 points lower
than the FID 6.21 of the model trained with batch size 128.
It again confirms that batch size is an important factor to be
considered when evaluating and comparing model perfor-
mance.

Note that we used a larger batch size than DDGAN (32
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Figure 1. Training curves on LSUN-Church and CelebA-HQ
(256 × 256) with two different batch sizes, namely 64 and 128.
The area under curves (green color) presents the difference in FID
scores between the two trained models. Unlike CelebA-HQ (256),
the gap between the two models on LSUN-Church is notably large
across different epochs. By using an appropriate batch size of
64, the minimum FID of the trained model can reduce to 5.06.
On CelebA-HQ (256), it again confirms that using sufficient batch
size is highly necessary for the model performance as the model is
trained with a batch size of 64 attaining a better FID score of 5.93.



CIFAR-10 STL-10 CelebA-HQ (256) CelebA-HQ (512) LSUN-Church

# of ResNet blocks per scale 2 2 2 2 2
Base channels 128 128 64 64 64
Channel multiplier per scale (1,2,2) (1,2,2,2) (1,2,2,2,4) (1,1,2,2,4,4) (1,2,2,2,4)
Attention resolutions None 16 16 16 16
Latent Dimension 100 100 100 100 100
# of latent mapping layers 4 4 4 4 4
Latent embedding dimension 256 256 256 256 256

Table 1. Network configurations.

vs. 16) on CelebA-HQ 512×512 with 8 GPUs
†
. Due to time

and resource limits, we cannot retrain our model with batch
size 16, but we expect our result will be further improved
in this fair experiment configuration, further increasing the
gap in performance between our algorithm and DDGAN.

2. Experimental details
2.1. Wavelet transformations

We utilize the implementation of wavelet transforma-
tions, including Discrete wavelet transform (DWT) and Dis-
crete inverse wavelet transform (IWT), from [2]. We per-
form these transformations on both input images and feature
maps for further processing in the proposed Wavelet-based
Diffusion framework.

2.2. Network configurations

Generator. Our generator has a UNet alike architecture [3]
which is mainly based on NCSN++ [4, 5]. As can be seen
in Tab. 1, we show the detailed configurations of the gener-
ator for each corresponding dataset. We adjust the number
of layers in the generator according to the input resolution
of wavelet coefficients. The number of channels of time
embedding is 4× larger than the base channels.

Discriminator. The number of layers in the discriminator
is the same as the one of the generator. For more details of
the discriminator structure, please refer to [5].

2.3. Training hyper-parameters

For reproductivity, we further provide a full table of
tuned hyper-parameters in Tab. 2. Basically, our hyper-
parameters are the same as the baseline [5] except for
the number of epochs and the allocated GPUs on spe-
cific datasets. Meanwhile, there are two new datasets, in-
cluding STL-10 64 × 64 and CelebA-HQ 512 × 512, that
share similar configurations of CIFAR-10 and CelebA-HQ
256× 256, respectively. Besides, the setting of CelebA-HQ
1024× 1024 is almost similar to CelebA-HQ 512× 512.

†
NVIDIA A100-40GB GPUs are used. Our model can fit a training

batch size of 4 instead of 2 as DDGAN per GPU.

For training time, CIFAR10 and STL10 models require
1.6 and 3.6 days on a single GPU, respectively. On CelebA-
HQ 256 and LSUN-Church, they take 1.1 and 6.8 days on 2
and 4 GPUs, respectively. On high-resolution CelebA-HQ
512, it takes 4.3 days on 8 GPUs. Besides, the training time
is mainly influenced by the number of denoising steps, the
size of network architectures, and image resolutions (pre-
sented in Tab. 1) apart from the number of training epochs.
This is also the same for the inference time.

3. More qualitative results
We further provide additional qualitative results on

CIFAR-10 in Fig. 3, STL-10 in Fig. 4a, CelebA-HQ 256 in
Fig. 5, CelebA-HQ 512 in Fig. 6, LSUN-Church in Fig. 7,
and CelebA-HQ 1024 in Fig. 8.

A comparison of qualitative samples between ours and
DDGAN [5] on STL-10 is also presented in Fig. 4. Our
model clearly achieves better sample quality with a plausi-
ble appearance of generated objects, while the counterpart
fails to represent object-specific shapes in output samples.
We also add a qualitative comparison on the CelebA-HQ
512 dataset (Fig. 2), which further illustrates the advantages
of our proposal in producing clearer details, such as eye-
brows and wrinkles.

4. More discussion

Connection between wavelet transformation and speed.
Let X ∈ RC×H×W denote an input image. Wavelet trans-
formation reduces its spatial dimension while increasing its
channel dimension by four-folds: Y ∈ R4C×H/2×W/2.
This input is then projected to the base channel D via
the first linear layer, keeping the network width unchanged
compared with DDGAN. Hence, most of the network ben-
efits from 4× reduction in spatial dimensions, significantly
reducing its computation (measured in FLOPs). For further
acceleration, we decrease the network depth since a smaller
spatial dimension requires fewer downsampling steps.

Increment novelty. While wavelet transformation has been
used in many previous works on different tasks, ours is the



CIFAR-10 STL-10 CelebA-HQ (256 & 512) LSUN-Church CelebA-HQ (1024)

lrG 1.6e-4 1.6e-4 2.e-4 1.6e-4 2.e-4
lrD 1.25e-4 1.25e-4 1.e-4 1.e-4 1.e-4
Adam optimizer (β1 & β2) 0.5, 0.9 0.5, 0.9 0.5, 0.9 0.5, 0.9 0.5, 0.9
EMA 0.9999 0.9999 0.999 0.999 0.999
Batch size 256 256 64 & 32 128 24
Lazy regularization 15 15 10 10 10
# of epochs 1800 900 500 & 400 500 400
# of timesteps 4 4 2 4 2
# of GPUs 1 1 2 & 8 4 8

Table 2. Choices of hyper-parameters

first work employing it in diffusion models and in a compre-
hensive manner. Wavelet transformation is carefully incor-
porated on both the pixel and feature levels. Particularly, for
the feature level, we proposed three wavelet-based network
components, and each component is designed to utilize low
and high-frequency subbands for improved output quality.
Thanks to these proposals, we achieve state-of-the-art run-
ning speed with a near real-time performance for a diffusion
model, allowing this advanced technique to be applicable to
real-time applications. Our method also provides a faster
and more stable model training, as discussed in Sec 5.5. of
the main paper. Hence, we believe our paper is essential and
not just an incremental work.

Reasons why the high-frequency subbands are unpro-
cessed and directly transmitted to the decoder in the
frequency bottleneck block. When designing this block,
we aimed to strengthen our model’s focus on learning low-
level features while preserving the details; hence we di-
rectly transmitted the high-frequency components to the
IWT module. We have tested processing both low and high
subbands on STL-10 and got almost the same FID (12.96
vs. 12.93), suggesting that this design is not critical.

Progressive upsampling. We actually tried this direction
first, but it produced quite poor results. On CelebA-HQ 256,
the FID score of the 2-level upsampling network is 13.11,
much higher than ours (5.94). We suspect a discrepancy
in conditional distribution between low and high-frequency
p(xhi|xlo), causing mismatching between generated sub-
bands, and deteriorating the output quality.
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Figure 2. Qualitative comparision on CelebA-HQ 512× 512

Figure 3. Non-curated generated samples on CIFAR-10
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Figure 4. Non-curated generated samples between ours and DDGAN [5] on STL-10



Figure 5. Non-curated generated samples on CelebA-HQ 256× 256



Figure 6. Non-curated generated samples on CelebA-HQ 512× 512



Figure 7. Non-curated generated samples on LSUN-Church



Figure 8. Non-curated generated samples on CelebA-HQ 1024× 1024
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