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1. Overview

We give more details on our user study together with

additional results in Sec. 2. Sec. 3 contains more evaluation

results of our uncertainty guidance approach. Finally, we

show a full table of our ablation study in Sec. 4, interpola-

tion of arbitrary times in Sec. 5, and give more details on

our network architecture and implementation in Sec. 6.

2. User Study

We conducted an extensive user study to evaluate our

method on both live-action and rendered content.

Methodology. Similar to [9] we asked users to compare

the interpolation results of our approach against other meth-

ods side by side through a web interface as shown in Fig. 2.

The left-right order is sampled randomly to avoid bias and

we extended their methodology by adding an option for

strong preference. We asked users to contribute 40 com-

parisons to the study, but we gave them the opportunity to

rate up to 120 samples and stop at any point. The samples

shown to the users were taken randomly, but we ensured

that all votes were distributed equally among all samples.

Input. We used 30 frame pairs from each of the animated

movies [1, 2, 4, 5] for the comparisons yielding a total of

120 pairs. For live-action, we randomly selected one pair

of each scene from the validation set of DAVIS [11] (20

pairs in total) and one pair of each video from the SNU-

FILM [3] categories medium, hard and extreme, i.e. 31 per

difficulty level, for a total of 113 frame pairs for live-action

content. To get smooth animations for the comparison, we

recursively apply each method until we get a sequence of 17

frames, which we show to the users in a forward/backward

loop, i.e. a boomerang.

*Work done during an internship at Disney Research
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Figure 1. User study on live-action datasets. On average, users

had a normal/strong preference for our method for 45/25% of all

votes.

Methods. On each sample we compared our LS approach

against the following methods. ABME [10], FILM LS [12],

IFRNet (Large) [7], RIFE [6], VFIformer [8].

Results. We collected a total of 3158 AB comparisons

from 69 participants for the animated movie data and 1463

votes from 33 participants for live action data. We show the

results on live-action data in Fig. 1.

Visual examples. We give examples of the data used in

our user study in Figs. 5 to 8.

3. Uncertainty Guidance

We have shown the PSNR improvement of our L1 vari-

ant when replacing patches based on the color error pre-

diction. We show the same plot in Fig. 9, but also include

LPIPS and repeat the study for our LS variant and when
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Figure 2. Screenshot of the interface of our user study showing

an interpolation of [11].

using the perceptual error in terms of LPIPS for patch se-

lection. In Figs. 10 to 13 we show the full analysis of the

capabilities of our model to handle additional inputs com-

pared to a replacement of the output patches with highest

error. Fig. 3 shows a failure case of our error estimation.
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Figure 3. Failure case of the error prediction on [5]. When at-

tempting to bridge a large 7 frame gap on full resolution, the

model is no longer able to correlate the positions and only pre-

dicts an error around the original locations of the dragon/bird.

4. Ablation Study

We give a full listing of PSNR and SSIM values on all

datasets for our ablation study in Tab. 1.

5. Arbitrary Time Interpolation

Our method is capable of interpolating frames at times

other than t = 1 by rescaling the flow vectors in the cross-

backward warping and the flow residual module. We show

PSNR and LPIPS results for intermediate values in Fig. 4

on data from X4K1000FPS [13]. For the evaluation we use

non-overlapping sequences of 9 frames, where the first and

last frames are the input, and downsample the resolution to

512 × 270. Note, that the network was not trained on such

data and does currently not take the value of t into account

other than for rescaling the flow vectors. This likely leads to
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Figure 4. Interpolation results for arbitrary times between input

frames at t = 0 and t = 2 on X4K1000FPS [13].

instabilities and a diminishing quality for values of t other

than 1.

6. Implementation Details

Here, we give more details on our implementation and

network architecture. We used Pytorch 1.11 for our im-

plementation and follow their nomenclature here. All 2d

convolutions use kernel size 3, unless denoted otherwise

and Dl denotes the number of channels of the latent fea-

ture representation at level l (D0 := 67, D1 := 163,

Ci∈{2..6} := 355). We show more details of the network

architecture in Figs. 14 to 16.
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Figure 5. Samples from the Big Buck Bunny [4] user study.



Inputs

GTruth

ABME

FILM LS

IFRNet

RIFE

VFIformer

Ours LS

Figure 6. Samples from the Cosmos Laundromat [2] user study.
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Figure 7. Samples from the Elephants Dream [1] user study.
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Figure 8. Samples from the Sintel [5] user study.
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(a) Replacement of patches using the color error prediction

of our L1 variant compared to ground truth L2 error.

(b) Replacement of patches using the perceptual error

prediction of our L1 variant compared to ground truth

LPIPS error.

0 1

4

1

8

1

16

1

32

36

40

44

48P
S

N
R

36

40

44

48

0 1

4

1

8

1

16

1

32

L
P

IP
S

0.08

0.06

0.04

0.02

0.08

0.06

0.04

0.02

GTruth ErrorRandom Ours Êc
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(c) Replacement of patches using the color error prediction

of our LS variant compared to ground truth L2 error.

(d) Replacement of patches using the perceptual error

prediction of our LS variant compared to ground truth

LPIPS error.

Figure 9. Evaluation of our error prediction.
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Figure 10. We evaluate how our L1 variant handles additional

inputs compared to a replacement of the output. We use L2 error

to select patches and show the replacement of outputs from FILM

L1 and VFIformer for comparison.
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Figure 11. We evaluate how our L1 variant handles additional

inputs compared to a replacement of the output. We use LPIPS

error to select patches and show the replacement of outputs from

FILM L1 and VFIformer for comparison.
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Figure 12. We evaluate how our LS variant handles additional

inputs compared to a replacement of the output. We use L2 error

to select patches and show the replacement of outputs from FILM

LS and IFRNet for comparison.
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Figure 13. We evaluate how our LS variant handles additional

inputs compared to a replacement of the output. We use LPIPS

error to select patches and show the replacement of outputs from

FILM LS and IFRNet for comparison.
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Figure 15. Architecture of the flow and context residual module.

L1 := 128 and Li∈{2..6} := 256
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