
A. Supplementary Materials
In this document, we provide additional details about our

method that were not included in the main manuscript, due
to space constraints. We include more implementation de-
tails about our approach (Sections 2 & 3), we provide more
details about the experiments of our paper (Sections 4) and
we include the training configurations for Kinetics-400 and
AVA for reproducibility.

B. Implementation details
Our complete system for action recognition by track-

ing integrates multiple sub-systems to combine the recent
advancements in 2D Detection, Recognition, 3D Recon-
struction, as well as Tracking. We can break the overall
pipeline into two parts: a) frames-to-entities and b) entities-
to-action.

The first part is to lift entities from frames (here, we con-
sider entities=people). For this, we use a state-of-the-art
tracking algorithm, PHALP [49]. The first step of PHALP is
to detect people in each frame using Mask R-CNN [24]. We
used Detectron2’s [68] new baseline models trained with
Simple Copy-Paste Data Augmentation [20] with a RegNet-
4gf [47] backbone for the detection task. After detecting
people in each frame, PHALP uses HMR [22, 27, 48] to
reconstruct each person in 3D. Then, the future location,
pose, and appearance of each person are predicted for solv-
ing association. PHALP uses Hungarian matching to solve
the associations between 3D detections and 3D predictions.
Finally, a set of tracks will be returned from the tracking
which gives us access to entities (people) over time.

For the second part, which is the main part of our paper,
we collect the tracks, generate action labels (either from a
pretrained model or from ground truth) and train a trans-
former model to predict actions from 3D tracks. More de-
tails on the network architecture and the training and infer-
ence protocol are discussed in the following sections.

B.1. PHALP tracklets
In this work, every person in both Kinetics-400 [29] and

AVA [23] is tracked. For this, we used the recently pro-
posed 3D tracking algorithm PHALP [49]. PHALP allows
us to track people in the wild very robustly and gives their
3D representations. However, the ground-truth action an-
notations for AVA are given as bounding boxes at 1 Hz fre-
quency. On a side note, we do not use the ground truth
tracking annotations in AVA dataset, which is also only
available at 1 Hz. First, we use the PHALP detection model
(e.g., Mask R-CNN) to detect humans in the video, when-
ever a frame does not have ground-truth annotations. If the
frame indeed has an annotation, we take the ground-truth
bounding boxes as granted and bypass Mask R-CNN detec-
tions. Since AVA only has bounding box annotations, and
PHALP [49] requires bounding boxes and masks, we use

Detectron2 [68] to extract masks from bounding boxes with
Mask R-CNN. For the validation set, we used the detections
from ACAR [44], which are also only available every 30
frames. Therefore, we used a similar strategy to get tracks
from bounding boxes available at 1 Hz. For Kinetics, we
run PHALP tracking for the whole sequence, which is typ-
ically 10s clips. However, since AVA is much longer than
Kinetics (15 min), we run the tracker for 4-second windows,
centered around the evaluation frame.

B.2. Architecture details
In all of our experiments, we use a vanilla trans-

former [58] architecture with 16 layers and width of 512.
Each layer has 16 self-attention heads followed by layer-
norm [2], and a 2-layer MLP followed by layer-norm. We
train all the models with a maximum sequence length of 128
frames per person. In other words, every tracklet is trimmed
to have a sequence length of 128 frames. The only data
augmentation we use is choosing the starting point of the
sequence for random trimming. The transformer blocks are
followed by a linear layer that predicts AVA action classes.
We train all our models with binary cross-entropy loss.

At training time, we use two types of attention masking.
First, since the tracklets are not always continuous due to
occlusion and missing detections, we mask the correspond-
ing self-attention of these tokens completely. The loss is
not applied to these tokens and this part of the tracklet has
no effect on training. The second type of masking is done
to simulate these kinds of missing detections at test time.
We randomly choose a small number of tokens (based on
mask ratio), and replace the person-vector with a learnable
mask-token. At the self-attention layer, attention is masked
such that these masked-tokens will attend other tokens but
other tokens will not attend the masked-tokens. Unlike, the
first type of masking, we apply loss on these masked token
predictions, since if there is a detection available, then there
will be a pseudo-ground truth or ground truth label available
for training.

At inference time, we do not do any attention-masking.
However, there will be some tracklets with discontinuous
detections. At these locations, we use the learned masked-
token to infill the predictions for the tracklets. Since we are
predicting action labels densely for each frame, we take an
average pooling of 12 tokens centered around the annotated
detection to minimize the gap between human annotations
and model predictions.

B.2.1 Action with 3D Pose

In this subsection, we discuss the network architecture used
for recognizing action only with 3D pose information over
time. The 3D pose has 226 parameters: 207 (23⇥3⇥3) pa-
rameters for joint angles, 9 for the global orientation of the



Configs Kinetics-400 AVA

optimizer AdamW [40]
optimizer momentum �1,�2 = 0.9, 0.95
weight decay 0.05
learning rate schedule cosine decay [41]
warmup epochs 5
drop out 0.1
base learning rate 1e-3 1e-3
layer-wise decay [10] - 0.9
batch size 64 64
training epochs 30 30
drop path [25] - 0.1
mask ratio 0.4 0.0

Table 6. Training Configurations: We report the training config-
urations used from training our models on Kinetics-400 and AVA
datasets.

person, and 10 for the body shape. In addition to this, the 3D
translation of the person in the camera frame is represented
by 3 parameters. Overall, in this system, a person-vector
has a dimension of 229. This vector is encoded by an MLP
with two hidden layers to project this to a 256-dimensional
vector. The projected person-vector is then passed to the
transformer. We also use the three types of positional en-
codings for time, track, and space as discussed in the main
manuscript (Section 3.1).

B.2.2 Action with 3D Pose and Appearance

To encode a strong contextualized appearance feature, we
used MViT [14] pretrained with MaskFeat [64]. The MViT
model for AVA takes a sequence of frames and a mid-frame

bounding box to predict the action label of the person of
interest (this is a classical example of the Eulerian way of
predicting action). In this paper, we use an MViT-L 40⇥3
model that takes a 4-second clip and samples 40 frames
with a temporal stride of 3 frames as the input and a bound-
ing box of a person at the mid-frame. This gives a 1152-
dimensional feature vector before the linear layer in the
MViT classifier. We use this 1152-dimensional feature vec-
tor as our contextualized appearance feature and encode it
into a 256 dimensional vector by an MLP with two hidden
layers. Now, we have a pose vector (256 dim, from the pre-
vious section) and an appearance vector (256 dim). We con-
catenate these two vectors to build our person-vector for 3D
pose with appearance, and the final 512-dimensional vector
is passed to the transformer.

B.3. Training recipe
As discussed in Section 3 of the main manuscript, we

first pretrain our method on Kinetics-400 dataset, using the
tracklets obtained from PHALP [49]. Each of these track-
lets contains a detection at every frame unless the person
is occluded or is not detected due to failure of the detection
system. We provide these detection bounding boxes as input
to the MViT [14] model and generate pseudo ground truth
action labels for the tracklets. Once the labels are generated,
we train our model end-to-end, with tracklets as inputs and
the action labels as outputs. We use the training configura-
tions in Table 6 for pretraining the model on Kinetics-400
tracklets. Once the model is pretrained on Kinetics track-
lets, we fine-tune the model on AVA tracklets (generated by
PHALP) with ground truth action labels. Finally, during the
fine-tuning stage, we apply layer-wise decay [10] and drop
path [25].


