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In this supplemental material, we will give more details
on the high-level appearance and motion deep networks that
we train including the training examples used and the net-
works’ accuracies. We show more visualizations of the ex-
plainability of our method. We discuss the speed of our
method both for model-building and anomaly detection. We
also discuss the limitations of our approach. Finally, we in-
clude a number of videos showing the anomaly detections
of our method on videos from the Street Scene, Avenue,
Ped1 and Ped2 datasets.

1. Data generation
1.1. Webcam dataset

Our key motivation is to learn features that can effi-
ciently represent generic knowledge about outdoor environ-
ments. To this end we collected surveillance videos from
publicly available webcams. We collected 33 videos in to-
tal of length 3 minutes each on average.

1.2. Appearance Model

As discussed in the main paper, we created our train-
ing dataset from multiple sources (CIFAR-10 [4], CIFAR-
100 [4], and MIO-TCD [7] and webcam videos as discussed
above).

Many of our training examples, especially for the person,
car and cyclist classes come from the webcam videos. We
manually annotated the videos with bounding boxes around
the people, cars and cyclists. In addition we added a subset
of the car, pedestrian and cyclist examples from the MIO-
TCD dataset [7]. Finally, we used the car and dog exam-
ples from CIFAR-10 [4] and the tree, house, skyscraper and
bridge classes from CIFAR-100 [4]. In total, we collected
116,799 images for training and 9,240 images held out for
validation spread across the 8 classes, all resized to 64x64
pixels.

After initial training of a ResNext-50 network [8], we
scanned the resulting classifier across a set of 28 large im-
ages of scenes not containing any of the 8 object classes.
Any patches classified as one of the objects were collected
to form a new set of hard negative examples. This yielded

an additional set of 62,336 background images which was
added to the training set and a new object recognizer was
trained from scratch. Hard negative mining was done a sec-
ond time to yield one more set of 8,658 background patches.
The total set of 187,793 images was used for a final training
from scratch to yield the final classifier.

Figure 2 shows example 64x64 pixel training images for
each class as well as the basic network architecture used for
the appearance network.

1.3. Motion Model

As discussed in the main paper, we use RGB video vol-
umes as input to our motion attribute networks and com-
pute ground-truth attribute labels using optical flow. Every
video volume in our dataset can be categorized as either
‘motion’ or ‘background’. To create video volumes, we se-
quentially sample N continuous frames from a video and
the corresponding N − 1 optical flow frames. We chose
N = 10 frames to follow the same settings as our video
anomaly detection pipeline. Using the flow frames and two
fixed thresholds, we define ‘regions with significant motion’
and ’background regions’. The first threshold (thmot) is the
maximum magnitude of a flow vector for it to be counted as
a moving pixel. The other threshold (thbkg) is the percent-
age of moving pixels required to say a video volume con-
tains motion. For our experiments we select thmot = 1.0
and thmot = 99%. We sample motion and background
video volumes from their respective regions. We do this
to improve the efficiency of selecting video volumes, as for
most surveillance videos, only a small set of regions have
some form of activity.

We sample 2, 551, 376 ‘motion’ video volumes and
283, 486 ’background’ video volumes. (Background sam-
ples are 10% of the total samples.) After sampling, we re-
size all the video volumes to spatial dimension [64 × 64].
Thus each video volume is of dimension [64× 64× 3×N ]
( [h × w × c × t] ) . We use 90% of these for training our
models and the remainder for validation.

1
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Figure 1. Selected frames from the webcam dataset of surveillance videos

Figure 2. Sample images from each category used for training the
appearance model as well as the basic architecture used for our
appearance model. The input to the network is a single 64x64
pixel color RGB image and the output is an independent proba-
bility (sigmoid function) for each of the eight output classes (not
softmax). Thus, there can be more than one object class recog-
nized for a single input image.

2. Motion network Architecture

Our backbone convolutional neural network model for
motion attribute learning is composed of three 3D convo-
lution (conv) layers and three 3D max-pooling layers, fol-
lowed by a fully-connected layer. Each conv layer is fol-
lowed by a batch normalization layer and a ReLU activa-
tion.

The first 3D conv layers use filters of dimensions 5 ×
5× 5, while the remaining two 3D conv layers use filters of
dimensions 3× 3× 3 each. The three 3D conv layers have
32, 64 and 128 filters respectively. We set the padding to
“same” and stride to 1. We perform only spatial pooling for
all three 3D max-pooling layers. The pooling size and the
stride are both set to 2. We add a fully connected layer at
the end to obtain a 128 dimensional feature vector.

For all the motion attribute learning tasks, we train sepa-
rate models. For each task-specific model, we use the same
backbone architecture described above with an additional
task specific prediction head. For angle prediction, we add
a fully connected layer with 13 units. For magnitude and
background pixel percentage prediction we add a fully con-
nected layer with 12 units and 1 unit each. Finally, for back-
ground classifier, we add a fully connected layer with 1 out-
put unit.

3. Experiments on the Accuracy of Appearance
and Motion Networks

The results in the main paper on 5 different video
anomaly detection datasets show that the features learned
by our appearance and motion networks are very effec-
tive for detecting anomalies in video. It is also interest-
ing to analyze how accurate our networks are on the object
recognition and motion attribute prediction tasks they are
trained for. Table 1 shows correct detection and false posi-
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Figure 3. Examples of automatically generated video volumes for training motion attribute models. Rows 1-5 shows example video
volumes from ‘motion’ regions, while Rows 6-7 shows ‘background’ video volumes.

Figure 4. Motion attribute models.

tive rates for our appearance network on a held-out test set
of 64x64 pixel images containing person, car, cyclist, dog,
tree, house, skyscraper, bridge and background (none of the
above) classes. Overall, accuracy is quite good. The cyclist
class has the lowest accuracy due to the fact that for some
views of cyclists, the bike is heavily occluded by the rider
which can cause the cyclist to be classified as a person. This
also explains why the person class a somewhat higher false
positive rate than other classes.

In Table 2 we show the error rates computed for each
motion attribute network. Specifically, for ’Background
classifier’ (BGClassifierNet) we report the classification er-
ror percentage on the held-out validation set. The table
shows that the background classifier is correct over 98%
of the time (1.69% error). For the ’Background Fraction’
(BGFractionNet) attribute model, we report the average L1
error. This network outputs values between 0 and 1, so
0.053 average error is quite low. In the case of the ’Angle’
(DirectionNet) and ’Magnitude’ (SpeedNet) attribute mod-
els, which output 12 values for the 12 different angle bins,
we are interested in evaluating the average deviation of the
predicted estimate to the ground-truth value over all possi-
ble angle bins. To this end we compute the mean of abso-
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Figure 5. Backbone architecture for our motion model

Class Correct Detection Rate False Positive Rate
person 95.5% 3.6%

car 94.2% 1.8%
cyclist 77.6% 1.1%

dog 99.0% 0.3%
tree 99.0% 0.5%

house 89.0% 0.5%
skyscraper 97.0% 0.3%

bridge 97.0% 0.7%

Table 1. Detection and false positive rates for our appearance net-
work on a held-out test set of 64x64 pixel RGB images.

lute difference for both the normalized angle histogram and
the magnitude vector. For DirectionNet, the output is a his-
togram so all values are between 0 and 1 and an average L1
error of 0.0184 shows good accuracy. For SpeedNet, values
do not have an upper bound but are typically between 0 and
10 pixels/frame. An average L1 error of 0.331 shows low
error. Our results demonstrate that our models can accu-
rately predict motion attributes for unseen videos with small
errors.

Further improving network accuracy will lead to in-
creases in video anomaly localization accuracy.

4. How well do appearance feature vectors for
unknown classes cluster together?

In the introduction we mention that video volumes con-
taining unknown object classes do not cause a problem for

Attributes Error Rate
BGClassifierNet 1.69%
BGFractionNet 0.053
DirectionNet 0.0184

SpeedNet 0.331

Table 2. Error rates for our motion networks on a held-out test set
of 10x64x64x3 video volumes.

our method because the appearance feature vectors (output
by our appearance network) for different images of the same
object class tend to have small distance. This is the main
advantage of using the network’s embedding as our appear-
ance feature as opposed to using the output class probabili-
ties. In order to back this claim up with data, we used a set
of 1000 horse images and 1000 ship images from Cifar-10
which are very different object classes from the 8 classes
our appearance network was trained on. For each image,
we computed its embedding using our appearance network
and then computed separately the average L2 distance be-
tween all horse images, between all ship images and be-
tween horse and ship images. The average L2 distance be-
tween horse image embeddings was 11.1, the average dis-
tance between ship image embeddings was 18.3, and the av-
erage distance between horse versus ship embeddings was
22.0. This shows that embeddings for images of the same
class tend to be closer than embeddings for images of dif-
ferent classes.

Furthermore, we ran k-means clustering using two clus-
ters on the horse and ship embeddings. The two result-
ing clusters approximately separated the two object classes.
One cluster contained 91% horse embeddings (and 9% ship
embeddings) and the other cluster contained 77% ship em-
beddings and 23% horse embeddings. Again this shows that
the embedding learned by our object recognizer does a good
job of clustering unknown object classes.

5. Computational Analysis

We analyze computational speed of our method on the
Ped2, Avenue and Street Scene datasets. For each dataset,
we compute the processing speed for anomaly detection
stage. The running time for model building (exemplar selec-
tion) is almost identical to anomaly detection. We compute
the total time taken by adding the time taken to extract fea-
tures from our high-level models and perform nearest neigh-
bor matching. The main computational bottleneck for our
method is computing feature vectors, which requires eval-
uating 5 different neural networks, on every video volume.
A simple but effective method was used to speed this up.
The important insight is that the feature vector for a video
volume should not change from one time step to the next
if the pixels of the video volume have not changed. If the
feature vector does not change then the anomaly score will
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not change either. So, for any video volume that is almost
identical to the previous video volume in time, we do not
need to compute its feature vector and the anomaly score
for the previous video volume can simply be used for the
new video volume. We use normalized cross correlation to
determine whether two video volumes are nearly identical.
Note that this speed-up does not prevent our method from
detecting static anomalies (such as loiterers).

For each dataset, the size of the spatial regions and thus
the number of regions differs since it is chosen depending
on the approximate height of a person in the dataset. Fur-
thermore, the size of frames in each dataset differs. As a
result, the computational speed differs for each dataset.

Dataset Anomaly Detection
Ped2 32 fps

Avenue 112 fps
Street Scene 12 fps

Table 3. Computational speed for our pipeleine. We show speed
for each stage in frames/second.

We present our results in Table 3. For each dataset,
we report results in frames per second. We used a single
NVIDIA Quadro RTX 8000 GPU for feature extraction and
Intel Xeon E5-2680 v4 @ 2.40GHz CPU for nearest neigh-
bour computations. For the Avenue dataset with 640× 360
resolution frames and a region-size of 128×128 resulting in
45 regions, the speed is relatively fast at over 6 frames/sec.
For Ped2 (with 360 × 240 frames and 345 spatial regions)
and especially for Street Scene (with 1280×720 frames and
897 spatial regions) our method is under 1 frame/sec.

We also show in Table 4 the running times for other pub-
lished VAD methods. These times are for the anomaly de-
tection phase only. (Note that different methods are bench-
marked using different GPUs so the numbers are not di-
rectly comparable.) For the model building phase, most
other methods require training a deep network on the nom-
inal video which makes those methods much slower than
ours since ours requires no network training in the model
building (exemplar learning) or anomaly detection stages.

Method Detection Speed GPU type
Ionescu et al [3] 11 fps Titan XP

Georgescu et al [1] 21 fps GTX 1080Ti
Georgescu et al [2] 18 fps GTX 3090

Liu et al [5] 25 fps GeForce TI-TAN
Liu et al [6] 10 fps RTX 3090

Ours 12 to 112 fps Quadro RTX 8000

Table 4. Computational speed for our pipeleine. We show speed
for each stage in frames/second.

6. Example Result Frames

Figure 6. A test frame from Street Scene (Test031) showing the
areas detected as anomalous by our method (shaded in red) and
the ground truth bounding box in blue.

Figure 7. A test frame from CUHK Avenue (Test006) showing the
areas detected as anomalous by our method (shaded in red) and the
ground truth bounding boxes in blue.

Figure 8. A test frame from UCSD Ped1 (Test006) showing the
areas detected as anomalous by our method (shaded in red) and
the ground truth bounding box in blue.

We show a few frames from Street Scene, CUHK Av-
enue, UCSD Ped1 and Ped2 with the areas detected as
anomalous from our method shaded in red and the ground
truth anomalies shown as blue bounding boxes in Figures
6 - 9. We also include example results videos from each
datasets in our supplementary material.
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Figure 9. A test frame from UCSD Ped2 (Test006) showing the
areas detected as anomalous by our method (shaded in red) and
the ground truth bounding boxes in blue.

7. Additional Visualizations of Results

Figure 10 shows a visualization of the exemplars learned
for a region of Street Scene on the edge of the sidewalk as
well as a visualization of the high-level attributes estimated
for a video volume in this region around an anomalous cy-
clist who is outside of the bike lanes (shown on the left side
of the image). The top ten exemplars for this region (along
the top of the figure) show either background/unknown ob-
jects with little motion or people moving in the direction of
the sidewalk at low speed, as expected. The visualization
of the high-level attributes for the video volume centered
on the cyclist shown in the frame on the left, show that
the video volume was estimated to contain a person mov-
ing downward at a fast speed. Although the object class
is incorrect (it should be class 2, cyclist), the direction and
speed are still different from the exemplars learned for this
region. The closest exemplar (shown at the bottom right of
the figure) is estimated to contain an unknown object (al-
though person is the most likely class) moving down and to
the right at a slow speed. The distance between the test fea-
ture vector and the closest exemplar feature vector is 2.47
which is high and indicates an anomaly.

Figure 11 shows a region of Street Scene on the street.
As expected, the visualization of the top ten exemplars
shows either background with little or no movement or
cars/unknown objects moving mainly down and right (the
direction of the street) at various speeds. The attributes of
a video volume centered around a car that is making a u-
turn is visualized at the bottom, left of the figure. It shows a
car moving right at a fast speed. The nearest exemplar is a
car moving down and right at a slow speed. The exemplar-
based model does not have any examples of cars moving
in this direction from the nominal data. Therefore, the test
video volume has a high anomaly score and is detected as
anomalous.

Figure 12 shows an example from a region on the side-
walk. The exemplars for this region show either back-
ground/unknown objects with very little movement or peo-

ple/unknown objects moving either up and left or down and
right. The visualization of the high-level attribues estimated
for a video volume centered on a person riding a motorcycle
onto the sidewalk is shown at the bottom, left of the figure.
It shows that the video volume was estimated to contain a
cyclist moving left at high speed. Although this is not a
cyclist, it is a reasonable classification for a motorcyclist.
The nearest exemplar is a person walking down and right
at a fast speed. The distance between the test video vol-
ume and the nearest exemplar is large (2.55) and indicates
an anomaly.

Figure 13 shows an example of a false positive anomaly
detection in Street Scene. For the region on the street shown
in the frame at the left of the figure, the visualized exem-
plars show mainly non-moving background/unknown ob-
jects or cars/unknown objects moving down and right at
various speeds. The test video volume centered at the frame
and region shown at the left of the figure contains the back
of a car that is coming to a stop as it moves down and right.
The visualization of this video volume shows that it is esti-
mated by our appearance and motion networks to be a car
moving at moderate speed up and left. This is the opposite
direction to how the car is actually travelling and opposite
to how cars normally travel in this spatial region. The angle
network has made a mistake in this case. Thus, the closest
exemplar is an unknown object (whose highest likelihood is
the car class) barely moving. Because of the wrongly esti-
mate direction of motion, the anomaly score is high, and an
anomaly is falsely indicated.

As a final example, in Figure 14 we show a missed
anomaly detection on Street Scene. The region we focus
on is on the street and the particular video volume is cen-
tered on a cyclist who is outside of the bike lane. As ex-
pected, the exemplars learned for this spatial region show
either background/unknown objects with very little move-
ment or cars/unknown objects moving down and right at fast
speeds. The visualization of the video volume containing
the anomalous cyclist shows that it was estimated to con-
tain a person moving down and right at a fast speed. The
closest exemplar is an unknown object (although with rel-
atively high likelihoods for person and car) traveling down
and to the right at a fast speed. Because the motion angle
and speed match fairly closely and the appearance feature
vector is similar, the resulting distance (1.59) is not high
enough to indicate an anomaly. This is mainly a failure of
the appearance model to correctly classify the cyclist.

The visualizations of correct anomaly detections as well
as false positives and missed detections illustrate how the
high-level attributes estimated for each video volume lead
to human-understandable explanations of the decisions our
system makes. Analyzing the errors also shows that de-
spite state-of-the-art accuracy on Street Scene, CUHK Av-
enue and ShanghaiTech datasets, the appearance and mo-
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Figure 10. Visualization of the learned exemplars for a region of Street Scene and visualization of a test video volume explaining why it
was detected as an anomaly.

Figure 11. Visualization of the learned exemplars for a region of Street Scene and visualization of a test video volume explaining why it
was detected as an anomaly.

tion deep networks are far from perfect and improvements
to these networks will directly translate to higher accuracy
for video anomaly localization.

8. Limitations

One general limitation of our approach is that it relies
on the appearance and motion networks that estimate high-
level features from a video volume. If these networks are
wrong, our method may make a mistaken determination of
anomalous/normal, depending on how wrong the networks
are. In general, the more accurate the appearance and mo-
tion networks are, the more accurate our anomaly detection
method will be.

Our current system has difficulty with a few classes of
anomalies in the datasets we have tested on. On Street
Scene, we tend to fail to detect anomalies consisting of cy-
clists or cars that are slightly outside of their proper lanes.
This could be improved with a finer grid of spatial regions,
but at the cost of a higher computational cost. We also tend

to miss very small anomalies in Street Scene (mainly small
dogs being walked on the sidewalk).

On the Ped1 and Ped2 datasets, our method has diffi-
culty with skateboarders, especially ones that are traveling
about the same speed as pedestrians. There are often only
very subtle motion differences between skateboarders and
pedestrians in Ped1 and Ped2 since the skateboard itself is
usually barely visible.



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

CVPR
#6684

CVPR
#6684

CVPR 2023 Submission #6684. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Figure 12. Visualization of the learned exemplars for a region of Street Scene and visualization of a test video volume explaining why it
was detected as an anomaly.

Figure 13. Visualization of the learned exemplars for a region of Street Scene and visualization of a test video volume explaining why it
was falsely detected as an anomaly.
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Figure 14. Visualization of the learned exemplars for a region of Street Scene and visualization of a test video volume explaining why it
was not detected as an anomaly.
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