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In this supplementary material, we provide,
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E. Baseline details

F. Results of all corruptions

A. Efficiency for TTA methods

Memory efficiency. Existing TTA works [23, 28, 29] up-
date model parameters to adapt to the target domain. This
process inevitably requires additional memory to store the
activations. Fig. 6 describes Eq. (1) of the main paper in
more detail. For instance, 1) the backward propagation from
the layer (c) to the layer (b) can be accomplished without
saving intermediate activations fi and fi+1, since it only re-
quires ∂L
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erations. 2) During the forward propagation, the learnable
layer (a) has to store the intermediate activation fi−1 to cal-
culate the weight gradient ∂L
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Computational efficiency. Wall-clock time and floating
point operations (FLOPs) are standard measures of com-
putational cost. We utilize wall-clock time to compare the
computational cost of TTA methods since most libraries
computing FLOPs only support inference, not training.

Unfortunately, wall-clock time of EATA [23] and our ap-
proach can not truly represent its computational efficiency
since the current Pytorch version [24] does not support
fine-grained implementation [1]. For example, EATA fil-
ters samples to improve its computational efficiency. How-
ever, its gradient computation is performed on the full mini-
batch, so the wall-clock time for backpropagation in EATA

*Work done during an internship at Qualcomm AI Research.
†Corresponding author. ‡Qualcomm AI Research is an initiative of
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is almost the same as that of TENT [28]. In our approach,
our implementation follows Algorithm 1 to make each reg-
ularization loss Rk

θk
applied to parameters of k-th group

of meta networks θk in Eq. (3). In order to circumvent
such an issue, the authors of EATA report the theoretical
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Figure 6. Forward and backward propagation. The black and
red lines refer to forward and backward propagation, respectively.
f and (a, b, c) are the activations and the linear layers, respectively.

WideResNet-40 [31]
Avg. err Mem. (MB) Theo. time Wall time

Source 69.7 11 - 40s
Con. TENT [28] 38.3 188 - 2m 18s
CoTTA [29] 38.1 409 - 22m 52s
EATA [23] 37.1 188 2m 8s 2m 22s
Ours (K=4) 36.4 80 (80, 58%↓) 2m 27s 2m 49s
Ours (K=5) 36.3 92 (77, 51%↓) 2m 31s 2m 52s

ResNet-50 [12]
Avg. err Mem. (MB) Theo. time Wall time

Source 73.8 91 - 1m 8s
Con. TENT [28] 45.9 926 - 4m 2s
CoTTA [29] 40.2 2064 - 38m 24s
EATA [23] 39.9 926 3m 45s 4m 15s
Ours (K=4) 39.5 296 (86, 68%↓) 4m 16s 4m 41s
Ours (K=5) 39.3 498 (76, 46%↓) 4m 26s 5m 14s

Table 8. Comparison of training time on CIFAR100-C. We re-
port both theoretical time (in short, theo. time) and wall-clock
time, taking to adapt to all 15 corruption types. Theoretical
time is calculated by assuming that the ML frameworks (e.g., Py-
torch [24]) provide fine-grained implementations [1]. Con. TENT
refers to continual TENT.
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Algorithm 1: PyTorch-style pseudocode for EcoTTA.

# img_t: test image
# model: original and meta networks
#
# ent_min(): Entropy minimization loss
# Detach_parts(): Detach the graph connection
# between each partition of networks
# Attach_parts(): Attach the graph connection
# between each partition of networks

for img_t in test_loader:
# 1. Forward
output = model(img_t)
# 2. Compute entropy loss
loss_ent = ent_min(output)
loss_ent.backward()

# 3. Re-forward
# (This process is not required
# in fine-grained ML frameworks.)
Detach_parts(model)
_ = model(img_t)

# 4. Compute regularization loss
reg_loss = 0
for k_th_meta in meta_networks:

reg_loss += k_th_meta.get_l1_loss()
reg_loss.backward()

# 5. Update params of meta networks
optim.step()
optim.zero_grad()

Attach_parts(model)

time, which assumes that PyTorch handles gradient back-
propagation at an instance level. Similar to EATA, we
also report both theoretical time and wall-clock time in Ta-
ble 8. To compute the theoretical time of our approach,
we simply subtract the time for re-forward (in Algorithm 1)
from wall-clock time. We emphasize that this is mainly an
engineering-based issue, and the optimized implementation
can further improve computational efficiency. [23].

Using a single NVIDIA 2080Ti GPU, we measure the
total time required to adapt to all 15 corruptions, includ-
ing the time to load test data and perform TTA. The results
in Table 8 show that our proposed method requires neg-
ligible overhead compared to CoTTA [29]. For example,
CoTTA needs approximately 10 times more training time
than Continual TENT [28] with WideResNet-40. Note that
meta networks enable our approach to use 80% and 58%
less memory than CoTTA and EATA, even with such minor
extra operations.

B. Discussion and further experiments

Comparison on gradually changing setup. In Table 1
and 2, we evaluate all methods on the continual TTA
task, proposed in CoTTA [29] and EATA [23], where
we continually adapt the deployed model to each cor-
ruption type sequentially. Additionally, we conduct ex-
periments on the gradually changing setup. This grad-
ual setup, proposed in CoTTA, represents the sequence by
gradually changing severity for the 15 corruption types:

Method Con. TENT [28] EATA [23] CoTTA [29] Ours (K=4)

Avg. err (%) 38.5 31.8 32.5 31.4
Mem. (MB) 188 188 409 80 (58, 80%↓)

Table 9. Comparision on gradually changing setup. To con-
duct experiments, we use WRN-40 backbone on CIFAR100-C.
The values in parentheses refer to memory reduction rates com-
pared to TENT/EATA and CoTTA, sequentially.

Method Con. TENT [28] PETL [15] PETL+SDR Ours (K=4)

Avg. err (%) 38.3 73.3 42.5 36.4
Mem. (MB) 188 141 141 80

Table 10. Comparisons with methods for PETL. We com-
pare our method with methods [15] for parameter-efficient trans-
fer learning (PETL) with WRN-40 on CIFAR100-C. PETL+SDR
refers to PETL with our proposed self-distilled regularization.

Round Con. TENT TS DO LS KD Ours (K=4)

1 38.3 37.4 41.0 38.4 39.8 36.4
10 99.0 96.1 96.3 41.1 40.4 36.3

Table 11. Comparisons with methods for continual learning.
We report an average error rate (%) of 15 corruptions using WRN-
40 on CIFAR100-C. In the table, TS: Entropy minimization with
temperature scaling [11], DO: Dropout [26], LS: Label smoothing
with the pseudo label [21], and KD: Knowledge distillation [14].
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The results in Table 9 indicate that our approach outper-
forms previous TTA methods [23,28,29] even with the grad-
ually changing setup.

Comparisons with methods for parameter efficient
transfer learning. While our framework may be similar
to parameter-efficient transfer learning (PETL) [15, 16, 27]
in that only partial parameters are updated during training
time for PETL or test time for TTA, we utilized meta net-
works to minimize intermediate activations, which is crucial
for memory-constrained edge devices. We conduct experi-
ments by applying a PETL method [15] to the TTA setup.
The adapter module is constructed by using 3x3 Conv and
ReLU layers as the projection layer and the nonlinearity, re-
spectively, and these modules are attached after each resid-
ual block of the backbone networks. The Table 10 shows
that PETA+SDR needs a 177% increase in memory usage
with a 6.1% drop in performance, compared to our method.

Comparisons with methods for continual learning. Typ-
ical continual learning (CL) and continual TTA assume su-
pervised and unsupervised learning, respectively. However,
since both are focused on alleviating catastrophic forget-
ting, we believe that CL methods can also be applied in
continual TTA settings. The methods for addressing catas-
trophic forgetting can be divided into regularization- and
replay-based methods. The former can be subdivided into
weight regularization (e.g., CoTTA [29] and EATA [23])



Method Mem. (MB) Round 1 Round 4 Round 7 Round 10

Source 280 37.2 37.2 37.2 37.2
Con. TENT 2721 54.6 49.6 37.4 29.9
Con. TENT * 2721 56.5 52.7 42.7 36.5
CoTTA * 6418 56.7 56.7 56.7 56.7
Ours 918 (66, 85%↓) 55.2 55.4 55.4 55.4
Ours * 918 (66, 85%↓) 56.7 56.8 56.9 56.9

Table 12. Further experiments in semantic segmentation.
We represent the results based on mean intersection over union
(mIoU). * means that the method utilizes the same cross-entropy
consistency loss. The values in parentheses refer to memory re-
duction rates compared to TENT/EATA and CoTTA, sequentially.

#Partitions WRN-28 (12) WRN-40 (18) ResNet-50 (16)

K=4 2,2,4,4 3,3,6,6 3,3,5,5
K=5 2,2,2,2,4 3,3,3,3,6 2,2,4,4,4

Table 13. Details of # of blocks of each partition. The list of
numbers denotes the number of residual blocks for each part of the
original networks, from the shallow to the deep parts sequentially.
The values in parentheses are the total number of residual blocks.

and knowledge distillation [14], while the latter includes
GEM [20] and dataset distillation [7]. Suppose dataset dis-
tillation is applied to the continual TTA setup; for example,
we can periodically replay synthetic samples distilled from
the source dataset to prevent the model from forgetting the
source knowledge during TTA. Notably, our self-distilled
regularization (SDR) is superior to conventional CL meth-
ods in terms of the efficiency of TTA in on-device settings.
Specifically, unlike previous regularization- or replay-based
methods, we do not require storing a copy of the original
model or a replay-and-train process.

To further compare our SDR with existing regulariza-
tion methods, we conduct experiments while keeping our
architecture and adaptation loss but replacing SDR with
other regularizations, as shown in Table 11. The results
demonstrate that our SDR achieves superior performance
compared to other regularizations. In addition, Knowledge
distillation [14] alleviates the error accumulation effect in
long-term adaptation (e.g., round 10), while showing lim-
ited performance for adapting to the target domain.

Superiority of our approach compared to existing TTA
methods. Our work focuses on proposing an efficient ar-
chitecture for continual TTA, which has been overlooked
in previous TTA studies [2, 5, 18, 19, 28, 29] by introduc-
ing meta networks and self-distilled regularization, rather
than adaptation loss such as entropy minimization proposed
in TENT [28] and EATA [23]. Thus, our method can
be used with various adaptation losses. Moreover, even
though our self-distilled regularization can be regarded as a
teacher-student distillation from original networks to meta
networks, it does not require a large activation size or the
storage of an extra source model, unlike CoTTA [29].

In addition to the results in Table 6, we improve the

(K=4) Kernel size= 1, padding=0 Kernel size=3, padding=1
Arch Avg. err params ↑ Mem. Avg. err params ↑ Mem.

WRN-28 17.2 0.8% 396 16.9 9.5% 404
WRN-40 12.4 0.6% 80 12.2 6.4% 80

ResNet-50 14.4 11.8% 296 14.2 142.2% 394

Table 14. Kernel size in the conv layer. We report the average er-
ror rate (%), the increase rate of the model parameters compared to
the original model (%), and the total memory consumption (MB)
including the model and activation sizes, based on the kernel size
of the conv layer in meta networks.

(K=4) Transformations
Dataset Arch EATA [23] None +Color +Blur +Gray

CIFAR10-C WRN-40 13.0 12.5 12.3 12.3 12.2
CIFAR10-C WRN-28 18.6 17.8 17.4 17.2 16.9

CIFAR100-C WRN-40 37.1 36.9 36.7 36.6 36.4

Table 15. Ablation of the combination of transformations. To
warm up the meta networks, we use the following transformations
in Pytorch: ColorJitter (Color), GaussianBlur (Blur), and Ran-
domGrayscale (Gray). We report the average error rate (%).

segmentation experiments by comparing our approach with
CoTTA [29]. As we aforementioned, our approach has
scalability with diverse adaptation loss. Thus, as shown
in Table 12, we additionally apply cross-entropy consis-
tency loss* with multi-scaling input as proposed in CoTTA,
where we use the multi-scale factors of [0.5, 1.0, 1.5, 2.0]
and flip. Our method not only achieves comparable per-
formance with 85% less memory than CoTTA, but shows
consistent performance even for multiple rounds while con-
tinual TENT [28] suffers from the error accumulation effect.

C. Further implementation details

Partition of a pre-trained model. As illustrated in Fig. 3,
the given pre-trained model consists of three parts: clas-
sifier, encoder, and input conv, where the encoder denotes
layer1 to 4 in the case of ResNet. Our method is applied to
the encoder and we divide it into K parts. Table 13 describes
the details of the number of residual blocks for each part of
the encoder. Our method is designed to divide the shallow
layers more (i.e., densely) than the deep layers, improving
the TTA performance as shown in Table 4c.

Convolution layer in meta networks. As the hyperparam-
eters of the convolution layer1, we set the bias to false and
the stride to two if the corresponding part of the encoder in-
cludes the stride of two; otherwise, one. As shown in the
gray area in Table 14, we conduct experiments by modify-
ing the kernel size and padding for each architecture. To be
more specific, we obtain better performances by setting the
kernel size to three with WideResNet (with 10% additional
number of model parameters). On the other hand, utilizing
the kernel size of three with ResNet leads to significant in-

1https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html

https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html
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(a) Visualization of meta networks

(K=5) CIFAR10-C
WRN-28

CIFAR10-C
WRN-40

CIFAR100-C
WRN-40Variants 1 2 3 4 5 6 7

I ✓ ✓ ✓ ✓ ✓ 19.9 15.4 39.2
II ✓ ✓ ✓ ✓ ✓ 18.6 13.4 38.0
III ✓ ✓ ✓ ✓ 18.7 13.7 38.2
IV ✓ ✓ ✓ ✓ ✓ 18.6 12.4 36.7
V ✓ ✓ ✓ ✓ ✓ 19.8 12.9 37.2
VI ✓ ✓ ✓ ✓ 32.3 14.5 51.8
VII ✓ ✓ ✓ 20.7 14.9 40.1
XIII ✓ ✓ ✓ ✓ ✓ ✓ 18.1 12.6 37.2
IX ✓ ✓ ✓ ✓ 60.6 73.3 77.2

Ours ✓ ✓ ✓ ✓ ✓ ✓ 16.8 12.1 36.3

(b) Comparison of average error rate (%) on continual TTA setup (K=5)

Table 16. Components of meta networks. We conduct an ablation study on components of meta networks (i.e., 1⃝ ∼ 7⃝). Here, 1⃝ and
2⃝ refer to affine transformation and standardization in a BN layer after the original networks. 3⃝∼ 5⃝ and 6⃝∼ 7⃝, respectively, indicate

modules in a convolution block and two kinds of inputs of it. In table (b), ✓ means applying the component to meta networks.

(K=5) Ours
Dataset Arch EATA [23] L1 L2 L3

CIFAR10-C
WRN-28 18.6 17.3 16.9 16.9
WRN-40 13.0 12.2 12.3 12.1
Resnet-50 14.2 15.0 14.3 14.1

CIFAR100-C
WRN-40 37.1 36.5 36.4 36.3
Resnet-50 39.9 40.7 38.8 39.4

Table 17. Ablation study of main task loss. We compare the
average error rate (%) of three types of adaptation losses.

creases in parameters and memory sizes. Thus, we use one
and three as the kernel size with ResNet and WideResNet,
respectively.

Warming up meta networks. Before the model deploy-
ment, we warm up meta networks with the source data by
applying the following transformations, which prevent the
meta networks from being overfitted to the source domain.

Regardless of the pre-trained model’s architecture and
pre-training method, we use the same transformations to
warm up meta networks. Even for WideResNet-40 pre-
trained with AugMix [13], a strong data augmentation tech-
nique, the following simple transformations are enough to
warm up the meta networks. In addition, we provide the
ablation of the combination of transformations in Table 15.
from t o r c h v i s i o n import t r a n s f o r m s as T

TRANSFORMS = t o r c h . nn . S e q u e n t i a l (
RandomApply ( T . C o l o r J i t t e r ( 0 . 4 , 0 . 4 , 0 . 4 , 0 . 1 ) , p = 0 . 4 )
RandomApply ( T . G a u s s i a n B l u r ( ( 3 , 3 ) , p = 0 . 2 )
T . RandomGrayscale ( P = 0 . 1 ) )

Semantic segmentation. For semantic segmentation exper-
iments, we utilize ResNet-50-based DeepLabV3+ [3] from
RobustNet repository2 [4]. We warm up the meta networks
on the train set of Cityscapes [6] with SGD optimizer with
the learning rate of 5e-2 and the epoch of 5. Image trans-
formations follow the implementation details of [4]. After
model deployment, we perform TTA using SGD optimizer
with the learning rate of 1e-5, the image size of 1600×800,
the batch size of 2, and the importance of regularization λ of
2. The main loss for adaptation is same as Lent in Equ. (2).

2https://github.com/shachoi/RobustNet

D. Additional ablations

Main task loss for adaptation. To adapt to the target do-
main effectively, selecting the main task loss for adaptation
is a non-trivial problem. So, we conduct a comparative
experiment on three types of adaptation loss: L1) entropy
minimization [10], L2) entropy minimization with mean en-
tropy maximization [17], and L3) filtering samples using
entropy minimization [23]. With a mini-batch of N test im-
ages, the three adaptation losses are formulated as follows:

L1 =
1

N

N∑
i=1

H(ŷi), (5)

L2 = λm1

1

N

N∑
i=1

H(ŷi)− λm2
H(y), (6)

L3 =
1

N

N∑
i=1

I{H(ŷi)<H0} ·H(ŷi), (7)

where ŷi is the logits output of i-th test data, y =
1
N

∑N
i=1 p(ŷi), H(y) = −

∑
C p(y) log p(y), p(·) is the

softmax function, C is the number of classes, and I{·} is an
indicator function. λm1

and λm2
indicate the importance of

each term in Eq. (6) which are set to 0.2 and 0.25, respec-
tively, following SWR&NSP [5]. The entropy threshold H0

is set to 0.4× lnC following EATA [23].
The results are described in Table 17. Particularly, apply-

ing any of the three losses, our method achieves comparable
performance to EATA. Among them, using L3 of Eq. (7)
achieves the lowest error rate in most cases. Therefore, we
apply L3 to our approach as mentioned in Section 3.1.

Components of meta networks. As shown in Table 16, we
conduct an ablation study on each element of our proposed
meta networks. We observe that the affine transformation
is more critical than standardization in a BN layer after the
original networks. Specifically, removing the standardiza-
tion (variant II) causes less performance drop than remov-
ing the affine transformation (variant I). In addition, using

https://github.com/shachoi/RobustNet


(K=5) Ours
Dataset Arch MSE loss (Eq. (8)) L1 loss (Eq. (4))

CIFAR10-C
WRN-28 16.9 16.9
WRN-40 12.3 12.1
Resnet-50 14.1 14.1

CIFAR100-C
WRN-40 36.6 36.3
Resnet-50 39.5 39.4

Table 18. Ablation study of loss function of our regularization.
We present the average error (%) according to two types of loss
functions for self-distilled regularization.

only a conv layer in conv block (variant VI) also cause per-
formance degradation, so it is crucial to use the ReLU and
BN layers together in the conv block.

Loss function choice of our regularization. As mentioned
in Section 3.2, self-distilled regularization loss computes
the mean absolute error (i.e., L1 loss) of Eq. (4). This loss
regularizes the output x̃k of each k-th group of the meta
networks not to deviate from the output xk of each k-th part
of frozen original networks. The mean squared error (i.e.,
MSE loss) also can be used to get a similar effect which is
defined as:

MSE = (x̃k − xk)
2. (8)

We compare two kinds of loss functions for our regular-
ization in Table 18. By observing a marginal performance
difference, our method is robust to the loss function choice.

Robustness to the importance of regularization λ. We
show that our method is robust to the regularization term λ.
We conduct experiments using a wide range of λ as shown
in Figure 5b and the following table.

Round \λ 0 0.1 0.5 1 2 5 10
1 36.31 36.30 36.29 36.56 37.20 38.41 39.58
10 55.47 43.83 36.42 36.14 36.48 37.47 38.95

The experiments are performed with WideResNet-40 on
CIFAR100-C. When λ is changed from 0.5 to 1, the per-
formance difference was only 0.27% in the first round. We
also test λ to be extremely large (e.g., 5, 8, and 10). Since
setting λ to 10 may mean that we hardly adapt the meta net-
works to the target domain, the error rate (39.58%) with λ
of 10 was close to the one (41.1%) of BN Stats Adapt [22].

E. Baseline details

E.1. TTA works

We refer to the baselines for which the code was of-
ficially released: TENT3, TTT++4, CoTTA5, EATA6, and
NOTE7. We did experiments on their code by adding the

3https://github.com/DequanWang/tent
4https://github.com/vita-epfl/ttt-plus-plus
5https://github.com/qinenergy/cotta
6https://github.com/mr-eggplant/EATA
7https://github.com/TaesikGong/NOTE

needed data loader or pre-trained model loader. In this sec-
tion, implementation details of the baselines are provided.

BN Stats Adapt [22] is one of the non-training TTA ap-
proaches. It can be implemented by setting the model to the
train mode8 of Pytorch [24] during TTA.

TTT+++ [19] was originally implemented as the offline
adaptation, i.e., multi-epoch training. So, we modified
their setup to continual TTA. We further tuned the learn-
ing rate as 0.005 and 0.00025 for adapting to CIFAR10-C
and CIFAR100-C, respectively.

NOTE [8] proposed the methods named IABN and PBRS
with taking account of temporally correlated target data.
However, our experiments were conducted with target data
that was independent and identically distributed (i.i.d.).
Hence, we adapted NOTE-i.i.d (i.e., NOTE* in their git
repository), which is a combination of TENT [28] and
IABN without using PBRS. We fine-tuned the α of their
main paper (i.e., self.k in the code9) to 8 and the learning
rate to 1e-5.

Others (e.g., TENT [28], SWR&NSP [5], CoTTA [29], and
EATA [23]). We utilized the best hyperparameters specified
in their paper and code. In the case where the batch size of
their works (e.g., 200 and 256) differs from one for our ex-
periments (e.g., 64), we decreased the learning rate linearly
based on the batch size [9].

AdaptBN [25]. We set the hyperparameter N of their main
paper to 8. When AdaptBN is employed alongside TENT or
our approach, we set the learning rate to 1e-5 or 5e-6 [18].

E.2. On-device learning works

To unify the backbone network as ResNet-50 [12], we
reproduced the following works by referencing their paper
and published code: TinyTL10, Rep-Net11, and AuxAdapt.
This section presents additional implementation details for
reproducing the above three works.

TinyTL [1]. We attach the LiteResidualModules12 to
layer1 to 4 in the case of ResNet-5013. As the hyperpa-
rameters of the LiteResidualModules, the hyperparameter
expand is set to 4 while the other hyperparameters follow
the default values.

Rep-Net [30]. We divide the encoder of ResNet-50 into
six parts, as each part of the encoder has 2,2,3,3,3,3 resid-
ual blocks (e.g., BasicBlock or Bottleneck in Pytorch) from
the shallow to the deep parts sequentially. Then, we connect
the ProgramModules14 to each corresponding part of the en-

8pytorch.org/docs/stable/generated/torch.nn.Module.html#torch.nn.Module.train
9https://github.com/TaesikGong/NOTE/blob/main/utils/iabn.py

10https://github.com/mit-han-lab/tinyml/tree/master/tinytl
11https://github.com/ASU-ESIC-FAN-Lab/RepNet
12https://github.com/mit-han-lab/tinyml/blob/master/tinytl/tinytl/model/modules.py
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Time t −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Arch Method Gaus. Shot Impu. Defo. Glas. Moti. Zoom Snow Fros. Fog Brig. Cont. Elas. Pixe. Jpeg Avg. err Mem.

WRN-40
(AugMix)

Source 44.3 37.0 44.8 30.6 43.9 32.6 29.4 23.9 30.1 39.7 12.9 66.4 32.7 58.4 23.5 36.7 11
tBN [22] 19.5 17.6 23.8 9.6 23.1 11.1 10.3 13.4 14.2 15.0 8.0 13.9 17.3 16.0 18.8 15.4 11
Single do. TENT [28] 16.4 13.9 19.1 8.3 19.1 9.3 8.6 10.9 11.3 12.0 6.9 11.6 14.6 12.2 15.6 12.7 188
TENT continual [28] 16.4 12.2 17.1 9.1 18.7 11.4 10.4 12.7 12.4 14.8 10.1 13.0 17.0 13.3 19.0 13.3 188
TTT++ [19] 19.1 16.9 22.2 9.3 21.6 10.8 9.8 12.7 13.1 14.3 7.8 13.9 15.9 14.2 17.2 14.6 391
SWRNSP [5] 15.9 13.3 18.2 8.4 18.5 9.5 8.6 11.0 10.2 11.7 7.0 8.1 14.6 11.3 15.1 12.1 400
NOTE [8] 19.6 16.4 19.9 9.4 20.3 10.3 10.1 11.6 10.6 13.3 7.9 7.7 15.4 12.0 17.3 13.4 188
EATA [23] 15.2 13.1 17.5 9.5 19.9 11.6 9.3 11.4 11.5 12.4 7.8 11.1 16.1 12.2 16.1 13.0 188
CoTTA [29] 15.6 13.6 17.3 9.8 19.0 11.0 10.2 13.5 12.6 17.4 7.8 17.3 16.2 12.9 16.0 14.0 409
Ours (K=4) 16.1 13.2 18.3 8.0 18.3 9.3 8.6 10.5 10.1 12.2 6.8 11.3 14.5 11.0 14.8 12.2 80
Ours (K=5) 15.9 12.6 17.2 8.2 18.4 9.3 8.6 10.6 10.4 12.4 6.7 11.7 14.3 11.3 14.9 12.1 92

WRN-28

Source 72.3 65.7 72.9 46.9 54.3 34.8 42.0 25.1 41.3 26.0 9.3 46.7 26.6 58.5 30.3 43.5 58
tBN [22] 28.6 26.8 37.0 13.2 35.4 14.4 12.6 18.0 18.2 16.0 8.6 13.3 24.0 20.3 27.8 20.9 58
Single do. TENT [28] 25.2 23.8 33.5 12.8 32.3 14.1 11.7 16.4 17.0 14.4 8.4 12.2 22.8 18.0 24.8 19.2 646
Continual TENT [28] 25.2 20.8 29.8 14.4 31.5 15.4 14.2 18.8 17.5 17.3 10.9 14.9 23.6 20.2 25.6 20.0 646
TTT++ [19] 27.9 25.8 35.8 13.0 34.3 14.2 12.2 17.4 17.6 15.5 8.6 13.1 23.1 19.6 26.6 20.3 1405
SWRNSP [5] 24.6 20.5 29.3 12.4 31.1 13.0 11.3 15.3 14.7 11.7 7.8 9.3 21.5 15.6 20.3 17.2 1551
NOTE [8] 30.4 26.7 34.6 13.6 36.3 13.7 13.9 17.2 15.8 15.2 9.1 7.5 24.1 18.4 25.9 20.2 646
EATA [23] 23.8 18.8 27.3 13.9 29.7 16.0 13.3 18.0 16.9 15.7 10.5 12.2 22.9 17.1 23.0 18.6 646
CoTTA [29] 24.6 21.6 26.5 12.1 28.0 13.0 10.9 15.3 14.6 13.6 8.1 12.2 20.0 14.9 19.5 17.0 1697
Ours (K=4) 23.5 19.0 26.6 11.5 30.6 13.1 10.9 15.2 14.5 13.1 7.8 11.4 20.9 15.4 20.8 16.9 404
Ours (K=5) 23.8 18.7 25.7 11.5 29.8 13.3 11.3 15.3 15.0 13.0 7.9 11.3 20.2 15.1 20.5 16.8 471

Resnet-50

Source 65.6 60.7 74.4 28.9 79.9 46.0 25.7 35.0 49.4 54.7 13.0 83.2 41.2 46.7 27.7 48.8 91
tBN [22] 18.0 17.2 29.3 10.7 27.2 15.5 8.9 16.7 14.6 21.0 9.3 12.7 20.9 12.4 14.8 16.6 91
Single do. TENT [28] 16.6 15.7 25.7 10.0 24.8 13.8 8.3 14.9 13.8 17.6 8.7 10.0 19.1 11.5 13.8 15.0 925
TENT continual [28] 16.6 14.4 22.9 10.4 22.6 13.4 10.3 15.8 14.6 18.0 10.5 11.7 18.4 13.1 15.3 15.2 925
TTT++ [19] 18.2 16.9 28.7 10.5 26.5 14.5 8.9 16.5 14.5 20.9 9.0 9.0 20.4 12.3 14.7 16.1 1877
SWRNSP [5] 17.3 16.1 26.1 10.6 25.6 14.1 8.7 15.6 13.6 18.6 8.8 10.0 19.3 12.0 14.2 15.4 1971
EATA [23] 17.2 14.9 23.6 10.2 23.3 13.2 8.5 14.0 12.5 16.6 8.6 9.4 17.2 11.0 12.7 14.2 925
CoTTA [29] 16.2 15.0 21.2 10.4 22.8 13.9 8.4 15.1 12.9 19.8 8.6 11.3 17.5 10.5 12.2 14.4 2066
Ours (K=4) 16.5 14.5 24.3 9.7 23.7 13.3 8.8 14.7 12.9 17.0 9.1 9.4 17.6 11.4 13.1 14.4 296
Ours (K=5) 16.6 14.4 23.6 9.8 23.4 12.7 8.6 14.5 12.6 16.6 8.7 9.0 17.0 11.3 12.6 14.1 498

Table 19. Comparison of error rate (%) on CIFARC10-C with severity level 5. We conduct experiments on continual TTA setup. Avg.
err means the average error rate (%) of all 15 corruptions, and Mem. denotes total memory consumption, including model parameter sizes
and activations. WRN refers to WideResNet. The implementation details of the baselines are described in Section E.1.

Time t −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Arch Method Gaus. Shot Impu. Defo. Glas. Moti. Zoom Snow Fros. Fog Brig. Cont. Elas. Pixe. Jpeg Avg. err Mem.

WRN-40
(AugMix)

Source 80.1 77.0 76.4 59.9 77.6 64.2 59.3 64.8 71.3 78.3 48.1 83.4 65.8 80.4 59.2 69.7 11
tBN [22] 45.9 45.6 48.2 33.6 47.9 34.5 34.1 40.3 40.4 47.1 31.7 39.7 42.7 39.2 45.6 41.1 11
Single do. TENT [28] 41.2 40.6 42.2 30.9 43.4 31.8 30.6 35.3 36.2 40.1 28.5 35.5 39.1 33.9 41.7 36.7 188
continual TENT [28] 41.2 38.2 41.0 32.9 43.9 34.9 33.2 37.7 37.2 41.5 33.2 37.2 41.1 35.9 45.1 38.3 188
TTT++ [19] 46.0 45.4 48.2 33.5 47.7 34.4 33.8 39.9 40.2 47.1 31.8 39.7 42.5 38.9 45.5 41.0 391
SWRNSP [5] 42.4 40.9 42.7 30.6 43.9 31.7 31.3 36.1 36.2 41.5 28.7 34.1 39.2 33.6 41.3 36.6 400
NOTE [8] 50.9 47.4 49.0 37.3 49.6 37.3 37.0 41.3 39.9 47.0 35.2 34.7 45.2 40.9 49.9 42.8 188
EATA [23] 41.6 39.9 41.2 31.7 44.0 32.4 31.9 36.2 36.8 39.7 29.1 34.4 39.9 34.2 42.2 37.1 188
CoTTA [29] 43.5 41.7 43.7 32.2 43.7 32.8 32.2 38.5 37.6 45.9 29.0 38.1 39.2 33.8 39.4 38.1 409
Ours (K=4) 42.7 39.6 42.4 31.4 42.9 31.9 30.8 35.1 34.8 40.7 28.1 35.0 37.5 32.1 40.5 36.4 80
Ours (K=5) 41.8 39.0 41.9 31.2 42.7 32.5 31.0 35.0 35.0 39.9 28.8 34.5 37.5 32.8 40.5 36.3 92

Resnet-50

Source 84.7 83.5 93.3 59.6 92.5 71.9 54.8 66.6 77.6 81.8 44.3 91.2 72.2 76.6 56.5 73.8 91
tBN [22] 48.1 46.7 60.6 35.1 58.0 41.8 33.2 47.3 43.5 54.9 33.5 35.3 49.8 38.4 40.8 44.5 91
Single do. TENT [28] 44.1 42.7 53.9 32.6 52.0 37.5 30.5 43.4 40.2 45.7 30.4 31.4 45.1 35.0 37.6 40.1 926
continual TENT [28] 44.0 40.1 49.9 34.7 50.6 40.0 33.6 47.0 45.7 53.4 42.5 46.2 56.1 51.2 53.3 45.9 926
TTT++ [19] 48.1 46.5 60.8 35.1 57.8 41.6 32.9 46.8 43.3 55.0 33.3 34.0 50.0 38.1 40.6 44.2 1876
SWRNSP [5] 48.3 46.5 60.5 35.1 57.9 41.7 32.9 47.1 43.5 54.7 33.5 35.1 49.9 38.3 40.7 44.1 1970
EATA [23] 44.8 41.9 52.6 33.0 51.1 37.8 30.3 43.0 40.1 45.1 30.1 31.8 45.2 35.2 37.4 39.9 926
CoTTA [29] 43.6 42.8 50.4 34.2 51.6 39.2 31.4 43.4 39.6 47.4 31.3 32.2 43.4 35.8 36.7 40.2 2064
Ours (K=4) 44.8 40.3 49.2 32.3 50.1 36.3 29.5 41.0 39.9 44.6 31.5 33.7 45.3 36.3 37.7 39.5 296
Ours (K=5) 44.9 40.4 48.9 32.7 49.7 36.9 29.3 40.8 39.0 44.4 31.1 33.6 44.0 35.7 37.8 39.3 498

Table 20. Comparison of error rate (%) on CIFARC100-C with severity level 5. We conduct experiments on continual TTA setup. Avg.
err means the average error rate (%) of all 15 corruptions, and Mem. denotes total memory consumption, including model parameter sizes
and activations. WRN refers to WideResNet. The implementation details of the baselines are described in Section E.1.

coder. For the ProgramModule, we set the hyperparameter
expand to 4 while the rest hyperparameters are used as their
default values. We copy the input conv of ResNet-50 and
make use of it as the input conv of Rep-Net.

AuxAdapt [32]. We use ResNet-18 as the AuxNet. We
create pseudo labels by fusing the logits output of ResNet-

50 and ResNet-18, and optimize all parameters of ResNet-
18 using the pseudo labels with cross-entropy loss.

Warming up the additional modules. Before model de-
ployment, we pre-train the additional modules (i.e., the
LiteResidualModule of TinyTL [1], the ProgramModule of
Rep-Net [30], and the AuxNet of AuxAdapt [32]) on the



source data using the same strategy warming up the meta
networks as mentioned in Section C.

F. Results of all corruptions
We report the error rates (%) of all corruptions on con-

tinual TTA and memory consumption (MB) including the
model parameters and activations in Table 19 and Table 20.
These tables contain additional details to Table 1.
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