
A. Derivation for Mutual Information Frame-
work

This section describes the detailed derivation for our mu-
tual information framework. For clarity, we list the nota-
tions in Tab. 6.

A.1. Single-input Sinle-target Pre-training

We start with the basic form of single-input single-target
pre-training. The desired objective is to maximize the con-
ditional mutual information between the input representa-
tion zx and the target representation zy given the input trans-
form tx and target transform ty:

max I(zx; zy | tx, ty). (5)

According to the definition of conditional mutual informa-
tion, we have

I(zx; zy | tx, ty)

=

∫
p(tx, ty)

∫ [
p(zx, zy | tx, ty)·

log
p(zy | zx, tx, ty)
p(zy | tx, ty)

]
dzxdzydtxdty

=

∫
p(tx, ty)

∫ [
p(zx, zy | s, tx, ty)p(s | tx, ty)·

log
p(zy | zx, tx, ty)
p(zy | tx, ty)

]
dzxdzydtxdtyds

=

∫
p(s, tx, ty)

∫ [
p(zx | x)p(zy | y)·

log
p(zy | zx, tx, ty)
p(zy | tx, ty)

]
dzxdzydtxdtyds

= Ep(s,tx,ty,zx)
[ ∫

p(zy | y) log p(zy | zx, tx, ty)dzy
]

− Ep(s,tx,ty,zx,zy)
[
log p(zy | tx, ty)

]
= − Ep(s,tx,ty,zx)

[
H
(
p(zy | y), p(zy | zx, tx, ty)

)]
︸ ︷︷ ︸

prediction term for target representation

+ Ep(ty)
[
H
(
p(zy | ty)

)]
︸ ︷︷ ︸

regularization term to avoid collapse

, (6)

where the third equation holds because two representations
are independent given the input and target, and in the last
equation we apply the definitions of entropy and cross-
entropy. Eq. (6) shows that the mutual information can
be divided into a prediction term and a regularization term.
The prediction term requires the predicted distribution to be
close to the target distribution, while the regularization term
requires the target representations to maintain high entropy.

Next, we introduce parameterization to actually compute
these terms. Two representations are encoded via an input
encoder fθ and a target encoder fϕ, respectively. Because
we do not know p(zy | zx, tx, ty) in advance, we adopt an
approximation by first predicting ẑy = fψ(zx, tx, ty) and
then estimating with the posterior distribution P̂ (zy | ẑy).
The mutual information thus becomes

I(zx; zy | tx, ty)

=

∫
p(tx, ty)

∫ [
p(zx | tx, ty)p(zy | zx, tx, ty)·

log
p(zy | zx, tx, ty)
p(zy | tx, ty)

]
dzxdzydtxdty

= Ep(zx,tx,ty)
[ ∫

p(zy | zx, tx, ty) log p(zy | zx, tx, ty)dzy
]

− Ep(zx,zy,tx,ty)
[
log p(zy | tx, ty)

]
= Ep(zx,tx,ty)

[ ∫
p(zy | zx, tx, ty) log

p(zy | zx, tx, ty)
P̂ (zy | ẑy)

dzy

]
︸ ︷︷ ︸

KL Divergence ≥ 0

+ Ep(zx,tx,ty)
[ ∫

p(zy | zx, tx, ty) log P̂ (zy | ẑy)dzy
]

− Ep(zx,zy,tx,ty)
[
log p(zy | tx, ty)

]
≥ Ep(zx,tx,ty)

[ ∫
p(zy | zx, tx, ty) log P̂ (zy | ẑy)dzy

]
− Ep(zx,zy,tx,ty)

[
log p(zy | tx, ty)

]
= Ep(zx,zy,tx,ty)

[
log P̂ (zy | ẑy) ·

∫
p(s | zx, zy, tx, ty)ds︸ ︷︷ ︸
the integral is equal to 1

]

− Ep(ty)
[ ∫

p(zy | ty) log p(zy | ty)·∫
p(zx, tx | zy, ty)dzxdtx︸ ︷︷ ︸

this integral is equal to 1

dzy

]

= Ep(s,tx,ty)
[
log P̂

(
zy(ϕ) | ẑy(θ, ψ)

)]
︸ ︷︷ ︸

prediction term for target representation

+ Ep(ty)
[
H(zy(ϕ) | ty)

]
︸ ︷︷ ︸

regularization term to avoid collapse

, (7)

where the fourth inequality holds because KL Divergence
will not be less than 0. In the fifth equality, we intro-
duce training sample s to the expectation of the first term
and move zx and tx from the expectation of the second
term. In the last equality, zx and zy is moved out of the



Pre-training Method Typical Work Input
Data x

Target
Data y

Input
Representation zx

Target
Representation zy

Regularization
H
(
p(zy|ty)

) Distribution
Form P̂

Supervised Pre-training :
Image Classification ViT [24] view1 category dense feature category embedding negative categories Boltzmann

Weakly-supervised Pre-training :
Contrastive Language-
Image Pre-training CLIP [55] view1 text dense feature text embedding negative texts Boltzmann

Self-supervised Pre-training (intra-view) :
Auto-Encoder - view1 view1 dense feature dense pixels - Gaussian
1Dense Distillation FD [81],BEiT v2 tokenizer [54] view1 view1 dense feature dense feature stop gradient Gaussian
Global Distillation - view1 view1 dense feature global feature stop gradient Boltzmann
Masked Image Modelingpixel MAE [30] masked view1 view1 dense feature dense pixels - Gaussian

2Masked Image Modelingfeature
data2vec [4],MILAN [35],

BEiT [5],BEiT v2 [54] masked view1 view1 dense feature dense feature stop gradient Gaussian

Masked Image Modelingglobal - masked view1 view1 dense feature global feature stop gradient Gaussian

Self-supervised Pre-training (inter-view) :
Novel View Synthesis - view2 view1 dense feature dense pixels - Gaussian
Dense Instance Discrimination DenseCL [80] view2 view1 dense feature dense feature negative samples Boltzmann

3Instance Discrimination
MoCo [31],BYOL [27],

Barlow Twins [91] view 2 view1 dense feature global feature
negative samples / stop
gradient / decorrelation

Boltzmann
/ Gaussian

Siamese Image Modelingpixel - masked view2 view1 dense feature dense pixels - Gaussian
Siamese Image Modelingfeature SiameseIM [67] masked view2 view1 dense feature dense feature stop gradient Gaussian
Siamese Image Modelingglobal MSN [3] masked view2 view1 dense feature global feature negative samples Boltzmann

Table 5. Instances of our mutual information based pre-training framework. We only include single-input single-target methods in this table.
Methods without a listed typical work have rarely been explored before in pre-training. 1Input representation of Dense Distillation can be
continuous (FD) or discrete (BEiT v2 tokenizer). 2Target encoder of Masked Image Modelingfeature can be momentum encoder (data2vec),
pre-trained image encoder (MILAN), dVAE (BEiT), or discrete tokenizer distilled from pre-trained encoders (BEiT v2). 3Regularization
term of Instance Discrimination can be negative samples (MoCo), stop-gradient (BYOL), or decorrelation (Barlow Twins).

Notation Meaning
Typical Choices in Vision-centric Pre-training Paradigms

Supervised Weakly-supervised Self-supervised

s training sample from the training dataset image-category pair image-text pair image only

tx input transform operation applied to the sample s apply image augmentation apply image augmentation apply image augmentation
ty target transform operation applied to the sample s get annotated category get paired text apply image augmentation

tx the set of input transform operations applied to the sample s - - -
ty the set of target transform operations applied to the sample s - - -

x = tx(s) input data for the network training augmented image augmented image augmented image
y = ty(s) target data for the network training annotated category paired text augmented image

{xi}Ni=1 = tx(s) multiple inputs for the network training - - -
{yj}Mj=1 = ty(s) multiple targets for the network training - - -
Yk = {ykj}

Mk
j=1 the kth group of targets - - -

zx = fθ(x) input representation from the input encoder fθ image embedding image embedding image embedding
zy = fϕ(y) target representation from the target encoder fϕ category embedding text embedding image embedding
ẑy = fψ(zx, tx, ty) target prediction from the decoder fψ predicted embedding predicted embedding predicted embedding

zx = fθ({xi}Ni=1) input representation from the input encoder fθ - - -
zky = fϕk(Y

k) the kth group target representation from the target encoder fϕk - - -
ẑky = fψk(zx, tx, ty) the kth group target prediction from the decoder fψk - - -

P̂ (zy|ẑy) approximated target posterior given the prediction ẑy Boltzmann Boltzmann Boltzmann / Gaussian

P̂k(z
k
y |ẑky ) approximated target posterior given the prediction ẑky - - -

H
(
p(zy|ty)

)
regularization term to avoid representation collapse of zy negative categories negative texts

negative samples / stop
gradient / decorrelation

H
(
p
(
{zky}Kk=1|ty

))
regularization term to avoid representation collapse of {zky}Kk=1 - - -

Table 6. Notation used in this paper. For single-input single-target pre-training, we also list the typical choices in different pre-training
paradigm for each notation.

expectation because they should be deterministic once s,
tx, ty and model parameters are given. The right-hand

side of Eq. (7) is a lower bound of the actual mutual in-
formation and will be equal to it if and only if the esti-



mated distribution P̂ (zy | ẑy) matches the real distribution
p(zy | zx, tx, ty). We note that because zy should be a de-
terministic feature given zx, tx, ty during training, equality
can be achieved when the decoder predicts the target repre-
sentation precisely. So we have

I(zx;zy | tx, ty) = sup
fψ

Ep(ty)
[
H
(
p(zy(ϕ) | ty)

)]
︸ ︷︷ ︸

regularization term to avoid collapse

+ E
p(s,tx,ty)

[
log P̂

(
zy(ϕ) | ẑy(θ, ψ)

)
︸ ︷︷ ︸

prediction term for target representation

]
. (8)

We usually deal with the regularization term in an implicit
manner, such as introducing negative samples or stopping
gradient to the target encoder. Therefore, the prediction
term presents the loss function to be optimized in practice.

A.2. Multi-input Multi-target Pre-training

To derive the multi-input multi-target pre-training, we
extend the input and the target to a set of N inputs X =
{xi}Ni=1 and M targets Y = {yj}Mj=1. The set of targets
are split into K non-overlapping groups as Ym ∩ Yn ̸=m =
∅,∪Kk=1Yk = Y . The input representations and target rep-
resentations are zx = fθ({xi}Ni=1) and zky = fϕk(Yk), re-
spectively. The mutual information is computed between
zx and {zky}Kk=1 given the set of input transforms tx and
target transforms ty:

max I(zx; {zky}Kk=1 | tx, ty). (9)

Similar to Eq. (6), we can expand the mutual information as

I(zx; {zky}Kk=1 | tx, ty)

=

∫
p(tx,ty)

∫ [
p(zx, {zky}Kk=1 | tx, ty)·

log
p({zky}Kk=1 | zx, tx, ty)
p({zky}Kk=1 | tx, ty)

]
dzxd{zky}Kk=1dtxdty

=

∫
p(tx, ty)

∫ [
p(zx, {zky}Kk=1 | s, tx, ty)p(s | tx, ty)·

log
p({zky}Kk=1 | zx, tx, ty)
p({zky}Kk=1 | tx, ty)

]
dzxd{zky}Kk=1dtxdtyds

= Ep(s,tx,ty,zx)
[ ∫

p({zky}Kk=1 | Y )·

log p({zky}Kk=1 | zx, tx, ty)d{zky}Kk=1

]
− Ep(s,tx,ty,zx,{zky}Kk=1)

[
log p({zky}Kk=1 | tx, ty)

]

=

K∑
k=1

Ep(s,tx,ty,zx)
[ ∫

p({zky}Kk=1 | Y )·

log p(zky | zx, tx, ty, {ziy}k−1
i=1 )d{z

k
y}Kk=1

]
− Ep(s,tx,ty,zx,{zky}Kk=1)

[
log p({zky}Kk=1 | tx, ty)

]
=

K∑
k=1

Ep(s,tx,ty,zx)
[ ∫

p({ziy}k−1
i=1 | Y )p(zky | Y )·∫

p({ziy}Ki=k+1 | Y )d{ziy}Ki=k+1︸ ︷︷ ︸
the integral is equal to 1

·

log p(zky | zx, tx, ty, {ziy}k−1
i=1 )d{z

i
y}ki=1

]
− Ep(s,tx,ty,zx,{zky}Kk=1)

[
log p({zky}Kk=1 | tx, ty)

]
= −

K∑
k=1

Ep(s,tx,ty,zx,{ziy}k−1
i=1 )

[
H
(
p(zky | Yk), p(zky | zx, tx, ty, {ziy}k−1

i=1 )
)]

︸ ︷︷ ︸
prediction term for target representations

+ Ep(ty)
[
H
(
p({zky}Kk=1 | ty)

)]
︸ ︷︷ ︸

regularization term to avoid collapse

, (10)

where the fifth equality hold because the target representa-
tions are independent given targets, and {ziy}k−1

i=1 = ∅ for
k = 1.

During parameterization, we adopt different predictions
ẑky = fψk(zx, tx, ty) and distributions P̂k(zky | ẑky ) for dif-
ferent target groups. Then the mutual information can be
converted into

I(zx; {zky}Kk=1 | tx, ty)

=

∫
p(tx, ty)

∫ [
p(zx | tx, ty)p({zky}Kk=1 | zx, tx, ty)·

log
p({zky}Kk=1 | zx, tx, ty)
p({zky}Kk=1 | tx, ty)

]
dzxd{zky}Kk=1dtxdty

= Ep(tx,ty,zx)
[ ∫

p({zky}Kk=1 | zx, tx, ty)·

log p({zky}Kk=1 | zx, tx, ty)d{zky}Kk=1

]
− Ep(tx,ty,zx,{zky}Kk=1)

[
log p({zky}Kk=1 | tx, ty)

]



=

K∑
k=1

Ep(tx,ty,zx,{ziy}k−1
i=1 )

[ ∫
p(zky | zx, tx, ty, {ziy}k−1

i=1 )·

log
p(zky | zx, tx, ty, {ziy}k−1

i=1 )

P̂k(zky | ẑky )
dzky

]
︸ ︷︷ ︸

KL Divergence ≥ 0

+

K∑
k=1

Ep(tx,ty,zx,{ziy}k−1
i=1 )

[ ∫
p(zky | zx, tx, ty, {ziy}k−1

i=1 )·

log P̂k(z
k
y | ẑky )dzky

]
− Ep(tx,ty,zx,{zky}Kk=1)

[
log p({zky}Kk=1 | tx, ty)

]
≥

K∑
k=1

Ep(tx,ty,zx,{ziy}k−1
i=1 )

[ ∫
p(zky | zx, tx, ty, {ziy}k−1

i=1 )·

log P̂k(z
k
y | ẑky )dzky

]
− Ep(tx,ty,zx,{zky}Kk=1)

[
log p({zky}Kk=1 | tx, ty)

]
=

K∑
k=1

Ep(tx,ty,zx,{ziy}ki=1)

[
log P̂k(z

k
y | ẑky )·∫

p(s | tx, ty, zx, {ziy}ki=1)ds︸ ︷︷ ︸
the integral is equal to 1

]

+ Ep(ty)
[
p({zky}Kk=1 | ty) log p({zky}Kk=1 | ty)·∫
p(zx, tx | {zky}Kk=1, ty)dzxdtx︸ ︷︷ ︸

the integral is equal to 1

d{zky}Kk=1

]

=

K∑
k=1

Ep(s,tx,ty)
[
log P̂k

(
zky (ϕk) | ẑky (θ, ψk)

)]
︸ ︷︷ ︸

prediction term for target representations

+ Ep(ty)
[
H({zky}Kk=1 | ty)

]
︸ ︷︷ ︸
regularization term to avoid collapse

, (11)

where the fourth inequality holds because KL Divergence
will not be less than 0 for every summation term. The
equality can be achieved if and only if every P̂k(zky | ẑky )
matches p(zky | zx, tx, ty, {ziy}k−1

i=1 ). Therefore, the mutual
information for multi-input multi-target pre-training can be
bounded by

I
(
zx; {zky}Kk=1 | tx, ty

)
≥ sup

{fψk}
K
k=1

E
p(ty)

[
H
(
p
(
{zky (ϕk)}Kk=1 | ty

))]
︸ ︷︷ ︸

regularization term to avoid collapse

+

K∑
k=1

E
p(s,tx,ty)

[
log P̂k

(
zky (ϕk) | ẑky (θ, ψk)

)]
︸ ︷︷ ︸

prediction term for target representation

. (12)

It’s shown that different target groups are disentangled into
a summation of prediction terms, so we can optimize each
target objective independently.

B. Experiment Details

B.1. Pre-training Settings

We utilize InternImage-H as image encoder in Sec 4.1
for large model pre-training and ViT-B/16 as that in other
experiments for ablation study and fair comparison. For
image-text dataset (e.g., YFCC-15M [68]), a 12-layer
Transformer (with the same network architecture as BERT-
Base [22]) is utilized as text target encoder. For image
classification dataset (e.g., ImageNet [21]), we directly use
the linear classifier weight as category embedding target.
We employ 4-layer Transformer as decoder for image rep-
resentation target, and Attention Pooling as that for cat-
egory embedding or text global feature. Detailed hyper-
parameters for pre-training InternImage-H and ViT-B are
listed in Tab. 7.

Dynamic weighting is used to balance the weights of self-
supervised loss (LSSP) and supervised/weakly-supervised
loss (LSP). The overall training loss can be expressed as

L = LSSP + λLSP, (13)

where λ is the balance loss weight. Because the loss behav-
ior changes dramatically during training, it’s sub-optimal to
set a static weight. We propose to set λ dynamically ac-
cording to the loss gradients. Specifically, we compute the
exponential moving average of gradient norm that each loss
back-propagates to input features, denoted as ḡuni-modal and
ḡmulti-modal. Then λ is set as γ · ḡuni-modal/ḡmulti-modal, where γ
controls the gradient ratio between two loss terms. We find
this strategy to work well in practice (γ = 1 by default).

B.2. Tranfer Settings of InternImage-H

We strictly follow [79] for the transfer settings
of InternImage-H on ImageNet-1k, COCO, LVIS and
ADE20k. We briefly summarize the settings below.

ImageNet-1k. For ImageNet classification, the pre-trained
InternImage-H is fine-tuned on ImageNet-1k for 30 epochs.

COCO. For COCO object detection, we double the param-
eters of pre-trained InternImage-H via the composite tech-
niques [45]. Then it is fine-tuned with the DINO [95] detec-
tor on Objects365 [57] and COCO datasets one after another
for 26 epochs and 12 epochs.



Hyper-parameters ViT-B/16 InternImage-H

Image-to-image decoder layers 4
Image-to-image decoder hidden size 768 1024
Image-to-image decoder FFN hidden size 3072 4096
Image-to-image decoder attention heads 16
Attention pooling input size 768 1024
Attention pooling output size 768
Attention pooling attention heads 16

Data augment

RandomResizedCrop
RandomHorizontalFlip

ColorJitter
RandomGrayscale

GaussianBlur
Solarize

Mask strategy Blockwise mask
Mask ratio 50%
Input resolution 224× 224 192× 192

Training epochs
1600(ImageNet)

138(YFCC)
30

Batch size 4096 40000
Adam β (0.9, 0.95)
Peak learning rate 1.0× 10−3

Learning rate schedule cosine

Warmup epochs
40(ImageNet)

3.5(YFCC)
1

Weight decay 0.1
EMA coeff 0.995
EMA schedule cosine
Label smoothing 0.1
Stock. depth 0.1 (linear) 0.2 (uniform)

Table 7. Hyper-parameters for pre-training.

LVIS. For LVIS long-tailed object detection, we double the
parameters of pre-trained InternImage-H via the composite
techniques [45]. Then it is fine-tuned with the DINO [95]
detector on Objects365 [57] and LVIS datasets one after an-
other for 26 epochs and 12 epochs.

ADE20k. For ADE20k semantic segmentation, we fine-
tune InternImage-H with Mask2Former [18], and adopt the
same settings in [17, 78].

B.3. Transfer Settings of ViT-B/16

ImageNet-1k. The detailed fine-tuning and linear classi-
fication settings of ViT-B/16 on ImageNet-1k are listed in
Tab. 8 and Tab. 9.

COCO and LVIS. We utilize ViTDet [43] for object de-
tection. By default, the fine-tuning schedule is set to 100
epochs for both COCO and LVIS datasets. For the abla-
tion study, we use a short schedule of 25 epochs. Detailed
hyper-parameters are listed in Tab. 10 and Tab. 11.

ADE20k. Following [5, 30, 67], we employ UperNet [83]
as the segmentation network. We use the implementation
in MMSegmentation [19]. Detailed hyper-parameters are
listed in Tab. 12.

Hyper-parameters Value

Erasing prob. 0.25
Rand augment 9/0.5
Mixup prob. 0.8
Cutmix prob. 1.0
Input resolution 224× 224

Finetuning epochs 100
Batch size 1024
Adam β (0.9, 0.999)
Peak learning rate 2.0× 10−3

Learning rate schedule cosine
Warmup epochs 5
Weight decay 0.1
Layer-wise learning rate decay 0.65
Label smoothing 0.1
Stock. depth 0.1

Table 8. Hyper-parameters of ViT-B for ImageNet finetuning.

Hyper-parameters Value

Data augment
RandomResizedCrop

RandomHorizontalFlip
Input resolution 224× 224

Training epochs 90
Batch size 16384
Optimizer LARS
Peak learning rate 3.2
Learning rate schedule cosine
Warmup epochs 10
Weight decay 0.0

Table 9. Hyper-parameters of ViT-B for ImageNet linear probing.

Hyper-parameters Value

Data augment large scale jittor
Input resolution 1024× 1024

Finetuning epochs 100
Batch size 64
Adam β (0.9, 0.999)
Peak learning rate 1.0× 10−4

Learning rate schedule step
Warmup length 250 iters
Weight decay 0.1

Stock. depth 0.1

Relative positional embeddings ✓

Table 10. Hyper-parameters of ViT-B for COCO detection.



Hyper-parameters Value

Data augment large scale jittor
Input resolution 1024× 1024

Finetuning epochs 100
Batch size 64
Adam β (0.9, 0.999)
Peak learning rate 2.0× 10−4

Learning rate schedule step
Warmup length 250 iters
Weight decay 0.1

Stock. depth 0.1

Relative positional embeddings ✓

Table 11. Hyper-parameters of ViT-B for LVIS detection.

Hyper-parameters Value

Data augment
RandomCrop
RandomFlip

PhotoMetricDistortion
Input resolution 512× 512

Finetuning length 160k iters
Batch size 16
Adam β (0.9, 0.999)
Peak learning rate 1.0× 10−4

Learning rate schedule linear
Warmup length 1500 iters
Weight decay 0.05

Stock. depth 0.1

Relative positional embeddings ✓

Table 12. Hyper-parameters of ViT-B for ADE20k semantic seg-
mentatioin.

Gradient Ratio γ 0.2 0.5 1.0 2.0 5.0
ImageNet Top1 83.1 83.2 83.3 82.8 82.5
COCO APbox 50.2 50.5 50.5 48.9 47.6
Table 13. Ablation study of gradient ratio γ.

B.4. More Experiments

Ablation Study on Gradient Ratio γ. The gradi-
ent ratio γ is used in dynamic weighting (see Eq. (13)
in Appendix B.1). We ablate the choice of γ from
{0.2, 0.5, 1.0, 2.0, 5.0} in Tab. 13. These models are pre-
trained on ImageNet-1k for 100 epochs. Then they are
fine-tuned on ImageNet-1k classification and COCO object
detection. The fine-tuning schedules for ImageNet-1k and
COCO are set to 100 epochs and 25 epochs respectively.
As shown in Tab. 13, γ = 0.2, 0.5, 1.0 works quite well in
both classification and detection. We choose γ = 1.0 as our
default setting for its simplicity.

(a)

(b)

default

(c)

Blockwise
Mask

Input Views 
w/o mask 

Input Views

Mixed Input

Input Mixed View 
First 

Target View 
Second 

Target View 

same same

different different

different same

same different

Figure 3. Illustration of four design choices of target views.

First Target View Second Target View ImageNet Top1† COCO APbox

(a) same same 77.2 48.6
(b) different different 78.5 49.8
(c) different same 78.8 49.2

default same different 79.1 49.5

Table 14. Ablation study of target views. † ImageNet fine-tuning
is early-stopped at 20 epochs which we found consistent with the
final performance in practice.

Ablation Study on Target Views. Our M3I Pre-training
consists of two target image views during the multi-input
multi-target pre-training. Two input views of different im-
ages are mixed with a shared blockwise mask. As shown in
Fig. 3, the visible part of the blockwise mask is filled with
an augmented view of the first image, and the masked part
is filled with an augmented view of the second image. The
first target view and second target view are not permutable.
We ablate the choices of these two target image views (ei-
ther the same or different from the input image view) in
Tab. 14. These models are pre-trained on ImageNet-1k
without labels (i.e., they only have image representation tar-
get and do not have the category embedding target) for 200
epochs. Then, they are fine-tuned on ImageNet-1k classifi-
cation and COCO object detection. The fine-tuning sched-
ule is set to 100 epochs and 25 epochs respectively. Our
default setting works best in ImageNet classification. Al-
though (b) perform slightly better than our default setting
in COCO detection, the pre-training process of it is quite
unstable (FP16 loss scale is quite unstable), thus we do not
choose it as our default setting.

Experiment Results on Image-Text Retrieval. Following
the setting of BEiT-3 [78], our M3I Pre-training achieves
89.1 R@1 on Flickr30K zero-shot retrieval task, which is
better than BEiT-3 (88.2 R@1).



Model Pre-train Epochs ImageNet Top1
ViT-B/16 400 83.9
ViT-L/16 400 86.0

Table 15. Comparison of ViT-B/16 and ViT-L/16. The models are
pre-trained on ImageNet for 400 epochs and fine-tuned on Ima-
geNet classification for 100 epochs.

Experiment Results on ViT-L/16. We utilize our M3I to
pre-train ViT-L/16 on ImageNet for 400 epochs and com-
pare it with ViT-B/16. As shown in Tab. 15, ViT-L/16
achieves 86.0 Top1 accuracy on ImageNet fine-tuning.
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