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A. Network architecture
The architecture of our Multiplane Feature Encoder-

Renderer (MPFER) is described in the main paper and il-
lustrated in Figure 3. The Encoder and the Renderer consist
in two identical Unets with a base of 64 channels, illustrated
in more details in Figure S2.

B. Average metrics
In Section 4.1, Table 2, We compare our MPFER model

to various 2D-based video restoration methods for denois-
ing of synthetic noise on the Spaces dataset. Two of the
methods we consider, BPN [4] and DeepRep [1], are burst
denoising methods producing only one denoised output for
the entire set of noisy inputs. By default, we chose this out-
put to be frame number 6 at the center of the camera rig
and compared the performances of all the methods on that
frame. However, MPFER as well as BasicVSR [2] and Ba-
sicVSR++ [3], are multi-frame denoising methods produc-
ing one denoised output per noisy input. We compare their
average performances over the 16 frames of the validation
sequences in Table S1. We see that the overall performances
are comparable to those on frame 6 from Table 2. In particu-
lar, MPFER outperforms all other methods by large margins
on all noise levels. To qualitatively evaluate the cross-view
consistency of different methods, we also plot V×W slices
computed on scene 52 in Figure S1. We run BPN and Deep-
Rep 16 times (once per frame) to obtain these profiles. Our
method qualitatively matches the ground-truth better than
other methods.
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Figure S1. V×W slices computed on scene 52 of Spaces.

C. Ablations
Our MPFER method depends on three hyperparameters:

the number of depth planes D, the number of channels in
the multiplane representation C, and the upscaling factor
of the PSV/MPF representation s. In Table 2 of the main
paper, we evaluated the influence of model size by varying
these three hyperparameters simultaneously. We now eval-
uate the influence of each hyperparameter independently in
Table S2. We see that the performance of the method in-
creases with D, C and s, and so does the computational
complexity. Interestingly, the performance improvement is
higher when C increases from 4 to 16 (+0.4dB at Gain 20),
than when D increases from 16 to 64 (+0.23dB at Gain 20),
while the increase in computational complexity is signifi-
cantly lower (×1.33 vs ×2.97 respectively). This observa-
tion confirms that multiplane features are inherently more
powerful representations than multiplane images, allowing
to perform efficient 3D-based video restoration with fewer
depth planes.

D. Qualitative evaluations
We consider 4 experimental setups in the main paper: (1)

Novel View Synthesis on Spaces, (2) Denoising on Spaces,
(3) Denoising on the Real Forward Facing dataset, and (4)
Novel View Synthesis under Noise Conditions on the Real
Forward Facing dataset. We present some visual compar-
isons with state-of-the-art methods for the setups (2) and
(3) in Figure 4, and for the setup (4) in Figure 1. We present
some additional visual comparisons for the setup (1) in Fig-
ure S3 here.
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Figure S2. Unet architecture used for the Encoder and for the Renderer in all our MPFER experiments.

Gain 4 Gain 8 Gain 16 Gain 20 GFlops@

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ 500×800

VBM4D 32.30 0.90 n/a 30.12 0.849 n/a 27.53 0.763 n/a 26.58 0.723 n/a n/a
VNLB 33.41 0.917 0.089 30.31 0.869 0.144 25.79 0.794 0.279 23.58 0.746 0.363 n/a
BasicVSR 36.86 0.957 0.029 34.45 0.935 0.052 31.62 0.895 0.099 30.59 0.875 0.124 2090
BasicVSR++ 36.81 0.957 0.030 34.39 0.934 0.051 31.62 0.895 0.091 30.60 0.875 0.111 4300

UNet-SF 35.15 0.942 0.042 32.67 0.910 0.074 29.86 0.857 0.134 28.87 0.834 0.160 440
UNet-BR 35.23 0.943 0.040 32.72 0.912 0.070 29.97 0.861 0.124 29.02 0.840 0.148 470
UNet-BR-OF 36.37 0.955 0.029 34.18 0.934 0.049 31.65 0.896 0.091 30.71 0.878 0.112 710

MPFER-16 37.20 0.965 0.021 35.37 0.952 0.033 33.22 0.927 0.055 32.41 0.915 0.067 470
MPFER-32 37.52 0.967 0.020 35.69 0.954 0.030 33.50 0.931 0.051 32.66 0.919 0.063 1210
MPFER-64 37.60 0.968 0.020 35.78 0.955 0.030 33.58 0.932 0.050 32.74 0.920 0.061 1810

Table S1. Denoising on Spaces. Average metrics over the 16 frames in the validation sequences. Best results in bold, second best
underlined.

Gain 4 Gain 8 Gain 16 Gain 20 GFlops@

(D,C, s) PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ 500×800

Influence of the number of depth planes
(16, 8, 1.25) 37.75 0.969 0.019 35.98 0.957 0.028 33.83 0.934 0.049 33.00 0.922 0.061 610
(32, 8, 1.25) 37.86 0.970 0.018 36.11 0.958 0.027 33.95 0.935 0.047 33.10 0.924 0.059 1010
(64, 8, 1.25) 38.00 0.970 0.018 36.25 0.959 0.027 34.08 0.936 0.047 33.23 0.925 0.057 1810

Influence of the number of channels in the multiplane representation
(32, 4, 1.25) 37.64 0.969 0.021 35.81 0.957 0.031 33.59 0.935 0.051 32.74 0.923 0.062 910
(32, 8, 1.25) 37.86 0.970 0.018 36.11 0.958 0.027 33.95 0.935 0.047 33.10 0.924 0.059 1010
(32, 16, 1.25) 37.94 0.970 0.019 36.17 0.958 0.028 33.99 0.936 0.047 33.14 0.924 0.058 1210

Influence of the upscaling factor
(16, 8, 1.0) 37.56 0.968 0.020 35.80 0.955 0.030 33.70 0.933 0.051 32.89 0.921 0.063 470
(16, 8, 1.25) 37.75 0.969 0.019 35.98 0.957 0.028 33.83 0.934 0.049 33.00 0.922 0.061 610
(16, 8, 1.5) 37.86 0.969 0.019 36.08 0.957 0.029 33.92 0.935 0.050 33.08 0.923 0.061 780

Table S2. Denoising on Spaces. Influence of hyperparameters (D,C, s): number of depth planes, number of channels in the multiplane
representation, upscaling factor.



MPINet MPINet-dw MPINet-dw-it

DeepView MPFER-64 (ours) Ground truth

Figure S3. Qualitative evaluation for novel view synthesis on Spaces (best viewed zoomed in).
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