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In this Supplemental Material, we provide more details
and experimental results for further understanding of the
proposed Neuro-Modulated Hebbian learning algorithm.

1. More Details on the Hebbian Learning

In this section, we study the convergence of the proposed
soft Hebbian learning algorithm. We begin from a gener-
ative probabilistic model, as defined in Nessler et al. [0],
where we denote the observed data as @ = (x1, x2, ..., Z,,)
and the hidden cause ¢ = {C1, ..., Cy}. The true distribu-
tion p,(x) is then calculated as
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To estimate this true distribution, we design an approxi-
mation distribution given weights w. That is, ¢(x|w) =

Zszl q(z|Cy)qo(Ck), with g(z) = [T}, q(x;) and Vk,
q0(Cr) = qo(Cr, wor) := ewok, 3)

According to the above definition, we can find the optimal
parameters w* which minimize the KL-divergence of the
generative model and the original input distribution. We
then show it is possible to link the generative model to the
activation function of a neural network, using the Hebbian
rule defined in our main manuscript, the weights of the neu-
ral network will eventually converge to the optimal weights
w™ that minimize the KL-divergence aforementioned.

To that end, according to Nessler et al. [0], it is shown
that for each component k, the optimal parameter is propor-
tional to the mean of the corresponding component of the
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input distribution, that is

wy, =c- Hopy, (z), “

where p,, () is the mean distribution p, with p, =
p(x|Cy), and ¢ is a positive factor. Given the cause Cy,
the approximated distribution ¢(«|C}) is then

q(@|Cy) = [J vt = e, )
=1

where u;, = Z?:l w;rx;. Using the Bayesian rule, we de-
rive the posterior probability as
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It can be seen from (6) that the probabilistic model has a
neural interpretation, where ¢(Cy|x) can be described as
the output neuron’s exponential activation divided by its
layer’s total output, with wyy, as the bias term. We show that
a soft Hebbian learning rule defined in the main manuscript
has the equilibrium point wy, = wjj, with ¢ =
where R is the L2-norm of the weight vector wy, defined
in the main manuscript. To see this, based on the plasticity
rule as we defined in the main manuscript, we have
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where we assume the overlap of the support of the measure

p; and py can be neglected for [ # k, and p;(x) = p(x|C}).
The first term can be written as

/ Ry (@) (@)p(Cr)de = I - R- iy (1), (®)

where I is the normalization constant. The second term
can be written as
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This leads to the conclusion of E[Aw;;] = 0 given the op-
timal w defined in (4). The convergence follows the proof
we showed in the main manuscript.

2. More Implementation Details

For the soft Hebbian layer, the weights are initialized
with the source model. The norm R is setting to 1. The
learning rate 7 is setting to 10~3 for the Hebbian layer and
5 x 10~* for the Neuro-Modulation layer. All the results
are the average of three times running with different random
seeds based on Pyrorch. All models are tested on a single
NVIDIA Tesla A100 GPU. The algorithm pseudo-code is
shown in Algorithm 1.

Algorithm 1 Pseudo code of the proposed algorithm.

Input: Source pre-trained model I'; target dataset ;.
Output: The prediction of target samples.

1: Initialize the testing model I' with source pre-trained

model I'j parameter weights;
2: for batch z; in X; do
3. Update the Hebbian layer of I'}) with Hebbian learn-
ing rule: Aw;, = nyr(Rx; — ugpw;i);
4. Update the Neuro-Modulation layer of T} with loss

function H.
5. Output = T'}(z)
6: end for

Corruption Type Abbreviation
Gaussian Noise gaus
Shot Noise shot
Impulse Noise impul
Defocus Blur defcs
Glass Blur gls
Motion Blur mtn
Zoom Blur zm
Snow snw
Frost frst
Fog fg
Brightness brt
Contrast cnt
Elastic els
Pixelate px
JPEG Compression jpg

Table 1. Abbreviations of the 15 corruption types in CIFAR-
10/100C and ImageNet-C datasets.

3. More Experimental Results

Table | summarized the abbreviations of the different
corruption types. The performance results or classifica-
tion errors of our algorithm in comparisons with existing
methods for different levels of corruption are shown in Ta-
ble 4, 5 and 6. In the main body of the paper, only the
results for Level 5 corruption are reported. Our method
outperforms almost all the comparison methods including
TTT [9], NORM [8], TENT [10], and DUA [5] in all cor-
ruption severity levels and all corruption types. In addition,
Figure 1 shows the prediction comparison in some target
samples in MNIST [4], MNIST-M [I] and USPS [2] for
an SVHN [7] pre-trained source model. Our method recog-
nizes digits right but others are wrong in some cases. Figure
2 shows more feature map visualization after the first con-
volution layer obtained by different learning methods. We
can see that the Hebbian learning is able to generate feature
maps that are as good as those from the Oracle supervised
by labels.

The parameter amount of our new model is the same
as the source model. The testing time cost comparison is
shown in Table 2, in which NHL is about 50% slower than
TENT, but much faster (10-200 times) than DUA and TTT.
We also investigate the effect of the temperature-scaling
hyper-parameter 7 in Eq. (6) in the main manuscript. As
shown in Table 3, it does not affect the overall performance
much in a range.
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Figure 1. Prediction comparison in some target samples for an SVHN source model. The image with a red border means predicting wrong
and green means predicting right. It shows that our NML method recognizes digits more accurately than NORM and TENT.
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Figure 2. More feature map visualization of CIFAR-10C [3] after the first convolution layer obtained by different learning method. We
can see that the unsupervised Hebbian learning is able to generate feature maps which are as good as those from the supervised learning
(”Oracle”). It should be noted that the first row only shows the corresponding original image of the testing set but not the training set for
the source model.




Table 4. Error (%) for each corruption in CIFAR-10C severity (Level 1-4) is reported. For TENT and DUA, we use the ResNet-26 (top),
WRN-28-10 (middle) and WRN-40-2 (bottom) from their official implementation. Lowest error is highlighted for each corruption.

Methods ‘ gaus shot impul defcs gls mtn zm  saw  frst fg brt cnt els pXx ipg ‘ Avg.

Level 4
Source 639 537 570 289 589 324 381 259 339 175 104 337 26.7 407 272 | 36.6
TTT 415 354 3938 150 478 19.1 184 201 240 135 100 141 17.7 294 245 | 247

NORM 40.7 374 432 16.7 474 218 202 299 303 190 16.1 205 265 266 357 | 2838
TENT 353 326 390 149 441 201 17.8 268 278 17.1 138 21.3 239 225 304 | 258
DUA 310 276 358 132 407 203 154 222 206 127 10.1 148 205 18.6 246 | 219
Ours 289 263 321 13.1 406 169 157 225 220 137 124 166 209 189 247 | 21.7

Source 674 547 599 226 568 252 297 195 295 104 72 164 21.1 397 259 | 324
NORM 249 21.0 295 89 345 116 97 164 145 87 7.1 90 156 139 239 | 16.6
TENT 222 181 260 85 310 11.1 96 158 139 85 72 80 148 124 213 | 152
DUA 244 208 289 93 356 123 105 164 137 80 64 88 151 137 23.0 | 165
Ours 212 17.6 243 80 305 109 95 151 131 84 6.6 7.7 145 123 20.7 | 14.7

Source 241 171 16.4 6.6 235 84 74 122 115 83 6.2 92 106 194 13.1 | 129
TENT 13.8 11.7 143 6.7 18.6 82 7.1 106 9.7 7.5 6.1 84 109 85 132 | 103

DUA 137 11.8 13.5 5.9 183 7.6 6.6 103 9.0 7.4 5.8 7.2 9.9 9.3 13.0 | 10.0

Ours 121 102 124 6.2 159 7.5 7.1 9.9 8.5 7.1 5.8 6.7 106 7.8 122 9.3
Level 3

Source 580 475 385 177 462 328 306 227 318 126 95 19.3  20.7 237 247 | 29.1

TTT 372 316 28.6 115 358 19.1 158 178 233 11.0 9.1 116 143 189 223 | 205

NORM 37.8 351 347 141 382 21.7 182 275 290 166 152 186 19.6 21.1 333 | 254
TENT 331 297 307 124 351 203 159 243 257 152 130 181 175 17,5 298 | 225
DUA 283 246 270 104 307 202 144 204 193 11.0 92 123 146 151 23.1 | 187
Ours 27.0 233 237 107 29,5 171 134 202 223 123 11.1 133 154 153 232 | 185

Source 60.8 465 426 11.0 431 256 225 164 274 1.7 62 103 141 200 220 | 25.1
NORM 222 187 207 6.7 239 115 86 139 140 7.1 6.5 7.8 9.9 99 21.1 | 135
TENT 20.1 169 181 6.7 220 112 83 127 135 69 6.5 7.1 9.5 94 182 | 125

DUA 208 17.7  20.1 6.9 233 124 95 139 140 6.6 6.1 7.7 100 10.1 19.1 | 132
Ours 193 163 17.1 6.8 211 108 83 123 129 7.1 6.3 7.0 9.3 9.7 17.6 | 12.1
Source 204 14.6 9.7 5.4 129 8.6 6.5 99 114 63 5.5 7.2 7.4 96 12.1 9.8
TENT 12.6 104 10.4 6.0 127 8.1 6.7 9.5 9.1 6.7 5.9 7.5 8.4 7.5 12.7 8.9
DUA 122 105 9.3 5.5 119 7.8 6.1 9.1 9.1 6.1 54 6.3 7.0 74 117 8.4
Ours 112 9.5 9.2 5.5 111 7.5 6.6 8.3 8.4 6.4 5.6 6.1 7.8 73 11.5 8.1
Level 2
Source 43.1 27.8 293 102 495 234 224 264 213 103 8.7 134 147 179 223 | 22.7
TTT 288 207 230 9.0 36.6 154 131 202 169 9.2 83 102 125 148 19.7 | 172

NORM 31.0 253 287 135 388 188 163 278 239 154 146 17.1 187 196 30.6 | 22.7
TENT 265 212 251 119 341 165 141 243 207 134 122 164 162 163 267 | 19.7
DUA 223 168 229 92 303 160 127 215 157 9.6 87 111 127 133 208 | 16.2
Ours 22.1 16.6 195 106 291 145 124 193 172 113 107 122 146 141 218 | 164

Source 42.1 243 310 6.6 443 162 155 196 165 64 5.6 7.8 9.8 140 203 | 187
NORM 170 123 159 62 244 95 76 142 110 65 62 7.1 8.9 9.1 193 | 11.7
TENT 149 11.0 147 65 221 98 75 129 106 6.5 6.3 6.5 8.6 86 173 | 109
DUA 154 119 157 61 249 105 83 137 106 5.9 5.7 6.7 8.6 93 184 | 114
Ours 147 104 139 63 208 94 75 122 106 64 6.1 6.7 85 85 16.7 | 10.6

Source 134 88 8.0 51 142 65 5.8 9.2 8.5 53 53 6.1 6.5 7.8 109 | 8.1
TENT 102 7.6 8.6 59 13.0 72 6.2 8.1 7.8 6.3 5.8 6.9 7.5 70 11.8 | 8.0

continued on next page




Methods ‘ gaus shot impul defcs gls mtn zm  saw  frst fg brt cnt els pX ipg ‘ Avg.

DUA 100 7.5 7.6 5.1 124 64 5.7 8.3 7.3 5.2 5.2 5.7 6.4 6.8 109 7.4
Ours 9.1 7.5 7.6 5.5 113 7.0 6.3 7.6 7.3 5.9 54 5.7 7.1 69 104 | 74
Level 1
Source 258 184 19.0 8.5 51.1 147 182 150 13.8 8.3 8.3 8.7 144 113 16.5 | 16.8
TTT 19.1 158 16.5 8.0 379 11.7 122 128 119 8.2 8.0 83 126 11.1 155 | 14.0

NORM 240 209 225 134 381 165 155 205 188 149 140 153 191 169 247 | 19.7
TENT 207 18.0 19.1 11.8 350 146 137 175 164 126 118 138 167 145 209 | 17.1
DUA 165 138 16.6 8.3 304 124 126 145 122 84 8.4 88 134 11.0 159 | 13.6
Ours 164 14.1 152 104 289 128 123 148 138 109 105 11.1 143 124 174 | 144

Source 222 150 17.1 54 466 97 123 101 105 55 5.3 5.7 9.5 81 13.6 | 13.1
NORM 11.7 99 11.2 6.0 239 77 7.9 9.4 8.3 6.0 6.0 6.2 9.2 78 132 ] 9.6
TENT 11.0 838 10.7 62 214 175 7.6 8.8 8.2 5.8 6.3 5.9 8.7 7.8 127 | 9.2
DUA 11.8 87 11.4 55 232 79 8.5 9.3 8.2 5.5 54 5.6 9.0 75 128 | 94
Ours 105 8.7 9.8 6.0 207 7.6 7.6 8.5 7.8 5.8 6.0 6.1 8.9 75 122 | 89

Source 8.7 6.5 6.2 4.9 141 5.5 5.9 64 65 49 5.0 5.0 69 58 8.7 6.7
TENT 7.5 6.9 7.2 5.7 124 62 6.3 6.8 6.5 5.9 5.7 6.0 7.9 6.5 9.1 7.1
DUA 7.3 6.2 6.2 5.1 119 55 58 6.2 6.1 5.1 5.1 5.1 70 5.8 8.5 6.5
Ours 6.8 6.4 6.5 54 113 59 58 6.1 60 52 53 53 7.3 60 83 6.5

Table 5. Error (%) for each corruption in CIFAR-100C severity (Level 1-4) is reported. Source refers to results obtained from a model
trained on clean train set and tested on corrupted test sets. For TENT and DUA, we use the WRN-40-2 from their official implementation.
Lowest error is highlighted for each corruption.

Methods ‘ gaus shot impul defcs gls mtn zm  sow  frst fg brt cnt els px jpg | Avg.
Level 4

Source 60.7 51.6 479 27.1 544 303 289 374 390 354 272 359 344 390 40.1 | 393
NORM 426 399 416 292 459 314 309 380 352 360 281 31.7 357 326 419 | 36.1
TENT 389 363 36.6 273 420 289 284 348 328 321 263 298 333 299 384 | 33.1
DUA 43.0 390 379 269 4477 295 283 365 343 338 266 31.0 338 31.0 389 | 343
Ours 368 339 324 263 398 281 278 324 309 304 254 276 33.0 278 368 | 313

Level 3

Source 552 459 369 257 399 305 274 333 381 295 255 305 286 303 38.0 | 344
NORM 40.7 377 356 282 387 313 299 351 354 324 276 305 31.7 305 404 | 337
TENT 37.1 343 320 261 346 292 277 323 323 290 256 284 292 283 374 | 309
DUA 40.8 365 322 253 37.0 296 271 327 344 290 252 286 284 287 373 | 315
Ours 353 325 289 252 335 278 264 300 30.6 279 248 265 288 268 357 | 294

Level 2

Source 446 345 307 243 415 277 262 327 318 268 244 275 279 28.0 365 | 310
NORM 362 323 322 27.6 380 295 292 332 326 296 275 295 314 305 387 | 319
TENT 333 295 288 257 349 274 270 306 296 270 254 273 291 276 363 | 293

DUA 359 312 288 241 369 272 260 322 309 261 240 2066 279 276 359 | 294
Ours 319 283 273 249 333 263 26.1 288 284 262 245 259 283 26,5 345 | 28.1
Level 1

Source 344 296 269 238 429 256 261 261 274 240 238 243 284 252 324 | 281
NORM 322 305 293 273 377 283 287 294 298 27.6 275 279 323 29.0 352 | 302
TENT 293 276 269 255 347 266 267 270 273 256 252 260 298 267 329 | 279
DUA 312 285 264 238 369 253 259 262 271 241 239 239 286 254 320 | 273
Ours 28.1 269 259 246 331 258 256 259 265 246 245 252 294 259 312 | 269




Table 6. Error (%) for each corruption in ImageNet-C severity (Level 1-4) is reported. Source refers to results obtained from a model
pre-trained on ImageNet and tested on corrupted test sets. For TENT and DUA, we use the ResNet-18 from the RobustBench. Lowest
error is highlighted for each corruption.

Methods ‘ gaus shot impul defcs gls mtn zm  snow  frst fg brt cnt els px jpg | Avg.

Level 4
Source 928 935 96.0 90.2 820 859 78.6 868 87.8 99.1 657 995 562 572 525 | 81.6
TTT 645 68.2 706 845 687 697 647 814 728 948 485 988 495 49.1 47.1 | 689

NORM 593 612 600 656 59.1 61.1 589 665 628 692 534 723 51.1 513 512 | 60.2
TENT 582 588 585 660 594 594 606 602 618 597 527 914 519 519 519 | 60.2
DUA 660 678 662 8.1 713 780 712 787 737 808 571 992 537 558 518 | 705

Ours 53.8 54.0 53.7 641 584 580 59.0 59.1 606 604 512 673 503 51.1 507 | 56.8
Level 3

Source 789 80.5 852 854 765 778 757 773 862 988 5677 989 539 541 514 | 758

TTT 572 558 580 76.8 609 619 61.1 708 703 937 434 969 484 463 43.8 | 63.0

NORM 552 557 569 594 561 553 564 605 621 672 512 602 505 505 508 | 565
TENT 546 545 555 59.8 570 562 585 565 61.1 593 512 716 512 509 513 | 56.6

DUA 60.6 615 617 785 67.1 694 689 704 724 795 531 944 522 534 510 | 663
Ours 51.3 51.0 522 573 560 548 569 555 603 592 494 592 493 499 50.0 | 54.2
Level 2
Source 619 66.5 751 762 688 683 704 737 770 96.7 516 954 715 524 510 | 704
TTT 51.8 49.6 527 66.5 563 540 568 654 670 87.6 414 878 60.7 442 435 | 59.0

NORM 520 526 557 540 523 524 541 564 574 620 500 559 687 500 503 | 549
TENT 52.1 5277 541 546 535 52,6 553 547 573 574 507 595 704 509 514 | 552

DUA 546 56.6 58.6 676 613 624 643 663 657 73.6 503 831 70.8 51.6 504 | 62.5
Ours 49.5 50.1 514 528 518 517 538 532 558 568 489 548 663 48.8 493 | 53.0
Level 1
Source 51.8 537 604 693 61.1 60.1 650 60.1 594 91.0 49.1 849 563 51.6 505 | 61.6
TTT 444 451 490 582 472 527 535 53.1 488 78.0 409 721 49.0 492 49.6 | 52.7

NORM 506 506 536 521 509 506 529 530 523 573 498 533 544 497 50.1 | 52.1
TENT 515 512 524 527 516 513 539 524 530 554 500 56.1 551 503 504 | 525
DUA 503 516 541 615 577 570 615 566 545 67.6 489 740 552 511 502 | 56.8
Ours 49.0 49.1 505 515 499 502 520 51.0 50.8 547 484 528 524 489 49.0 | 50.7
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