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In this Supplemental Material, we provide more details
and experimental results for further understanding of the
proposed Neuro-Modulated Hebbian learning algorithm.

1. More Details on the Hebbian Learning
In this section, we study the convergence of the proposed

soft Hebbian learning algorithm. We begin from a gener-
ative probabilistic model, as defined in Nessler et al. [6],
where we denote the observed data as x = (x1, x2, ..., xn)
and the hidden cause ϑ = {C1, ..., Ck}. The true distribu-
tion pt(x) is then calculated as

pt(x) =

n∏
i=1

(

K∑
k=1

p(xi|Ck)p(Ck)). (1)

To estimate this true distribution, we design an approxi-
mation distribution given weights w. That is, q(x|w) =∑K

k=1 q(x|Ck)q0(Ck), with q(x) =
∏n

i=1 q(xi) and ∀k,

q(xi|Ck) = q(xi|Ck, wik) := ewik·xi , (2)

q0(Ck) = q0(Ck, w0k) := ew0k. (3)

According to the above definition, we can find the optimal
parameters w∗ which minimize the KL-divergence of the
generative model and the original input distribution. We
then show it is possible to link the generative model to the
activation function of a neural network, using the Hebbian
rule defined in our main manuscript, the weights of the neu-
ral network will eventually converge to the optimal weights
w∗ that minimize the KL-divergence aforementioned.

To that end, according to Nessler et al. [6], it is shown
that for each component k, the optimal parameter is propor-
tional to the mean of the corresponding component of the
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input distribution, that is

w∗
k = c · µpk

(x), (4)

where µpk
(x) is the mean distribution pk with pk =

p(x|Ck), and c is a positive factor. Given the cause Ck,
the approximated distribution q(x|Ck) is then

q(x|Ck) =

n∏
i=1

ewikxi = euk , (5)

where uk =
∑n

i=1 wikxi. Using the Bayesian rule, we de-
rive the posterior probability as

q(Ck|x) =
q(x|Ck)q0(Ck)

q(x)

=
euk+w0k∑K
l eul+w0l

. (6)

It can be seen from (6) that the probabilistic model has a
neural interpretation, where q(Ck|x) can be described as
the output neuron’s exponential activation divided by its
layer’s total output, with w0k as the bias term. We show that
a soft Hebbian learning rule defined in the main manuscript
has the equilibrium point wik = w∗

ik with c =
√
R

∥µpk
(x)∥ ,

where R is the L2-norm of the weight vector wk defined
in the main manuscript. To see this, based on the plasticity
rule as we defined in the main manuscript, we have

E[∆wik] =η

∫
x

yk(x)(Rxi − uk(x)wik)p(x)dx

=η

∫
x

yk(x)(Rxi − uk(x)wik)(
K∑
l=1

pl(x)p(Cl)

)
dx



=η(

K∑
l=1

∫
x

Rxiyk(x)pl(x)p(Cl)dx

−
K∑
l=1

wkwik

∫
x

xyk(x)pl(x)p(Cl)dx)

=η(

∫
x

Rxiyk(x)pk(x)p(Ck)dx

−wkwik

∫
x

xyk(x)pk(x)p(Ck)dx),

(7)

where we assume the overlap of the support of the measure
pl and pk can be neglected for l ̸= k, and pl(x) = p(x|Cl).
The first term can be written as∫

x

Rxiyk(x)pk(x)p(Ck)dx = Ik ·R · µpk
(xi), (8)

where Ik is the normalization constant. The second term
can be written as

wkwik

∫
x

xyk(x)pk(x)p(Ck)dx

= Ik ·wkwikµpk
(x)

= Ik ·R · µpk
(xi).

(9)

This leads to the conclusion of E[∆wik] = 0 given the op-
timal w defined in (4). The convergence follows the proof
we showed in the main manuscript.

2. More Implementation Details
For the soft Hebbian layer, the weights are initialized

with the source model. The norm R is setting to 1. The
learning rate η is setting to 10−3 for the Hebbian layer and
5 × 10−4 for the Neuro-Modulation layer. All the results
are the average of three times running with different random
seeds based on Pytorch. All models are tested on a single
NVIDIA Tesla A100 GPU. The algorithm pseudo-code is
shown in Algorithm 1.

Algorithm 1 Pseudo code of the proposed algorithm.

Input: Source pre-trained model Γs
θ; target dataset Xt.

Output: The prediction of target samples.
1: Initialize the testing model Γt

θ with source pre-trained
model Γs

θ parameter weights;
2: for batch xt in Xt do
3: Update the Hebbian layer of Γt

θ with Hebbian learn-
ing rule: ∆wik = ηyk(Rxi − ukwik);

4: Update the Neuro-Modulation layer of Γt
θ with loss

function H.
5: Output = Γt

θ(xt)
6: end for

Corruption Type Abbreviation

Gaussian Noise gaus
Shot Noise shot

Impulse Noise impul
Defocus Blur defcs

Glass Blur gls
Motion Blur mtn
Zoom Blur zm

Snow snw
Frost frst
Fog fg

Brightness brt
Contrast cnt
Elastic els
Pixelate px

JPEG Compression jpg

Table 1. Abbreviations of the 15 corruption types in CIFAR-
10/100C and ImageNet-C datasets.

3. More Experimental Results

Table 1 summarized the abbreviations of the different
corruption types. The performance results or classifica-
tion errors of our algorithm in comparisons with existing
methods for different levels of corruption are shown in Ta-
ble 4, 5 and 6. In the main body of the paper, only the
results for Level 5 corruption are reported. Our method
outperforms almost all the comparison methods including
TTT [9], NORM [8], TENT [10], and DUA [5] in all cor-
ruption severity levels and all corruption types. In addition,
Figure 1 shows the prediction comparison in some target
samples in MNIST [4], MNIST-M [1] and USPS [2] for
an SVHN [7] pre-trained source model. Our method recog-
nizes digits right but others are wrong in some cases. Figure
2 shows more feature map visualization after the first con-
volution layer obtained by different learning methods. We
can see that the Hebbian learning is able to generate feature
maps that are as good as those from the Oracle supervised
by labels.

The parameter amount of our new model is the same
as the source model. The testing time cost comparison is
shown in Table 2, in which NHL is about 50% slower than
TENT, but much faster (10-200 times) than DUA and TTT.
We also investigate the effect of the temperature-scaling
hyper-parameter τ in Eq. (6) in the main manuscript. As
shown in Table 3, it does not affect the overall performance
much in a range.
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MNIST MNIST-M USPS

Figure 1. Prediction comparison in some target samples for an SVHN source model. The image with a red border means predicting wrong
and green means predicting right. It shows that our NML method recognizes digits more accurately than NORM and TENT.
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Figure 2. More feature map visualization of CIFAR-10C [3] after the first convolution layer obtained by different learning method. We
can see that the unsupervised Hebbian learning is able to generate feature maps which are as good as those from the supervised learning
(”Oracle”). It should be noted that the first row only shows the corresponding original image of the testing set but not the training set for
the source model.



Table 4. Error (%) for each corruption in CIFAR-10C severity (Level 1–4) is reported. For TENT and DUA, we use the ResNet-26 (top),
WRN-28-10 (middle) and WRN-40-2 (bottom) from their official implementation. Lowest error is highlighted for each corruption.

Methods gaus shot impul defcs gls mtn zm snw frst fg brt cnt els px jpg Avg.

Level 4

Source 63.9 53.7 57.0 28.9 58.9 32.4 38.1 25.9 33.9 17.5 10.4 33.7 26.7 40.7 27.2 36.6
TTT 41.5 35.4 39.8 15.0 47.8 19.1 18.4 20.1 24.0 13.5 10.0 14.1 17.7 29.4 24.5 24.7
NORM 40.7 37.4 43.2 16.7 47.4 21.8 20.2 29.9 30.3 19.0 16.1 20.5 26.5 26.6 35.7 28.8
TENT 35.3 32.6 39.0 14.9 44.1 20.1 17.8 26.8 27.8 17.1 13.8 21.3 23.9 22.5 30.4 25.8
DUA 31.0 27.6 35.8 13.2 40.7 20.3 15.4 22.2 20.6 12.7 10.1 14.8 20.5 18.6 24.6 21.9
Ours 28.9 26.3 32.1 13.1 40.6 16.9 15.7 22.5 22.0 13.7 12.4 16.6 20.9 18.9 24.7 21.7

Source 67.4 54.7 59.9 22.6 56.8 25.2 29.7 19.5 29.5 10.4 7.2 16.4 21.1 39.7 25.9 32.4
NORM 24.9 21.0 29.5 8.9 34.5 11.6 9.7 16.4 14.5 8.7 7.1 9.0 15.6 13.9 23.9 16.6
TENT 22.2 18.1 26.0 8.5 31.0 11.1 9.6 15.8 13.9 8.5 7.2 8.0 14.8 12.4 21.3 15.2
DUA 24.4 20.8 28.9 9.3 35.6 12.3 10.5 16.4 13.7 8.0 6.4 8.8 15.1 13.7 23.0 16.5
Ours 21.2 17.6 24.3 8.0 30.5 10.9 9.5 15.1 13.1 8.4 6.6 7.7 14.5 12.3 20.7 14.7

Source 24.1 17.1 16.4 6.6 23.5 8.4 7.4 12.2 11.5 8.3 6.2 9.2 10.6 19.4 13.1 12.9
TENT 13.8 11.7 14.3 6.7 18.6 8.2 7.1 10.6 9.7 7.5 6.1 8.4 10.9 8.5 13.2 10.3
DUA 13.7 11.8 13.5 5.9 18.3 7.6 6.6 10.3 9.0 7.4 5.8 7.2 9.9 9.3 13.0 10.0
Ours 12.1 10.2 12.4 6.2 15.9 7.5 7.1 9.9 8.5 7.1 5.8 6.7 10.6 7.8 12.2 9.3

Level 3

Source 58.0 47.5 38.5 17.7 46.2 32.8 30.6 22.7 31.8 12.6 9.5 19.3 20.7 23.7 24.7 29.1
TTT 37.2 31.6 28.6 11.5 35.8 19.1 15.8 17.8 23.3 11.0 9.1 11.6 14.3 18.9 22.3 20.5
NORM 37.8 35.1 34.7 14.1 38.2 21.7 18.2 27.5 29.0 16.6 15.2 18.6 19.6 21.1 33.3 25.4
TENT 33.1 29.7 30.7 12.4 35.1 20.3 15.9 24.3 25.7 15.2 13.0 18.1 17.5 17.5 29.8 22.5
DUA 28.3 24.6 27.0 10.4 30.7 20.2 14.4 20.4 19.3 11.0 9.2 12.3 14.6 15.1 23.1 18.7
Ours 27.0 23.3 23.7 10.7 29.5 17.1 13.4 20.2 22.3 12.3 11.1 13.3 15.4 15.3 23.2 18.5

Source 60.8 46.5 42.6 11.0 43.1 25.6 22.5 16.4 27.4 7.7 6.2 10.3 14.1 20.0 22.0 25.1
NORM 22.2 18.7 20.7 6.7 23.9 11.5 8.6 13.9 14.0 7.1 6.5 7.8 9.9 9.9 21.1 13.5
TENT 20.1 16.9 18.1 6.7 22.0 11.2 8.3 12.7 13.5 6.9 6.5 7.1 9.5 9.4 18.2 12.5
DUA 20.8 17.7 20.1 6.9 23.3 12.4 9.5 13.9 14.0 6.6 6.1 7.7 10.0 10.1 19.1 13.2
Ours 19.3 16.3 17.1 6.8 21.1 10.8 8.3 12.3 12.9 7.1 6.3 7.0 9.3 9.7 17.6 12.1

Source 20.4 14.6 9.7 5.4 12.9 8.6 6.5 9.9 11.4 6.3 5.5 7.2 7.4 9.6 12.1 9.8
TENT 12.6 10.4 10.4 6.0 12.7 8.1 6.7 9.5 9.1 6.7 5.9 7.5 8.4 7.5 12.7 8.9
DUA 12.2 10.5 9.3 5.5 11.9 7.8 6.1 9.1 9.1 6.1 5.4 6.3 7.0 7.4 11.7 8.4
Ours 11.2 9.5 9.2 5.5 11.1 7.5 6.6 8.3 8.4 6.4 5.6 6.1 7.8 7.3 11.5 8.1

Level 2

Source 43.1 27.8 29.3 10.2 49.5 23.4 22.4 26.4 21.3 10.3 8.7 13.4 14.7 17.9 22.3 22.7
TTT 28.8 20.7 23.0 9.0 36.6 15.4 13.1 20.2 16.9 9.2 8.3 10.2 12.5 14.8 19.7 17.2
NORM 31.0 25.3 28.7 13.5 38.8 18.8 16.3 27.8 23.9 15.4 14.6 17.1 18.7 19.6 30.6 22.7
TENT 26.5 21.2 25.1 11.9 34.1 16.5 14.1 24.3 20.7 13.4 12.2 16.4 16.2 16.3 26.7 19.7
DUA 22.3 16.8 22.9 9.2 30.3 16.0 12.7 21.5 15.7 9.6 8.7 11.1 12.7 13.3 20.8 16.2
Ours 22.1 16.6 19.5 10.6 29.1 14.5 12.4 19.3 17.2 11.3 10.7 12.2 14.6 14.1 21.8 16.4

Source 42.1 24.3 31.0 6.6 44.3 16.2 15.5 19.6 16.5 6.4 5.6 7.8 9.8 14.0 20.3 18.7
NORM 17.0 12.3 15.9 6.2 24.4 9.5 7.6 14.2 11.0 6.5 6.2 7.1 8.9 9.1 19.3 11.7
TENT 14.9 11.0 14.7 6.5 22.1 9.8 7.5 12.9 10.6 6.5 6.3 6.5 8.6 8.6 17.3 10.9
DUA 15.4 11.9 15.7 6.1 24.9 10.5 8.3 13.7 10.6 5.9 5.7 6.7 8.6 9.3 18.4 11.4
Ours 14.7 10.4 13.9 6.3 20.8 9.4 7.5 12.2 10.6 6.4 6.1 6.7 8.5 8.5 16.7 10.6

Source 13.4 8.8 8.0 5.1 14.2 6.5 5.8 9.2 8.5 5.3 5.3 6.1 6.5 7.8 10.9 8.1
TENT 10.2 7.6 8.6 5.9 13.0 7.2 6.2 8.1 7.8 6.3 5.8 6.9 7.5 7.0 11.8 8.0

continued on next page



Methods gaus shot impul defcs gls mtn zm snw frst fg brt cnt els px jpg Avg.

DUA 10.0 7.5 7.6 5.1 12.4 6.4 5.7 8.3 7.3 5.2 5.2 5.7 6.4 6.8 10.9 7.4
Ours 9.1 7.5 7.6 5.5 11.3 7.0 6.3 7.6 7.3 5.9 5.4 5.7 7.1 6.9 10.4 7.4

Level 1

Source 25.8 18.4 19.0 8.5 51.1 14.7 18.2 15.0 13.8 8.3 8.3 8.7 14.4 11.3 16.5 16.8
TTT 19.1 15.8 16.5 8.0 37.9 11.7 12.2 12.8 11.9 8.2 8.0 8.3 12.6 11.1 15.5 14.0
NORM 24.0 20.9 22.5 13.4 38.1 16.5 15.5 20.5 18.8 14.9 14.0 15.3 19.1 16.9 24.7 19.7
TENT 20.7 18.0 19.1 11.8 35.0 14.6 13.7 17.5 16.4 12.6 11.8 13.8 16.7 14.5 20.9 17.1
DUA 16.5 13.8 16.6 8.3 30.4 12.4 12.6 14.5 12.2 8.4 8.4 8.8 13.4 11.0 15.9 13.6
Ours 16.4 14.1 15.2 10.4 28.9 12.8 12.3 14.8 13.8 10.9 10.5 11.1 14.3 12.4 17.4 14.4

Source 22.2 15.0 17.1 5.4 46.6 9.7 12.3 10.1 10.5 5.5 5.3 5.7 9.5 8.1 13.6 13.1
NORM 11.7 9.9 11.2 6.0 23.9 7.7 7.9 9.4 8.3 6.0 6.0 6.2 9.2 7.8 13.2 9.6
TENT 11.0 8.8 10.7 6.2 21.4 7.5 7.6 8.8 8.2 5.8 6.3 5.9 8.7 7.8 12.7 9.2
DUA 11.8 8.7 11.4 5.5 23.2 7.9 8.5 9.3 8.2 5.5 5.4 5.6 9.0 7.5 12.8 9.4
Ours 10.5 8.7 9.8 6.0 20.7 7.6 7.6 8.5 7.8 5.8 6.0 6.1 8.9 7.5 12.2 8.9

Source 8.7 6.5 6.2 4.9 14.1 5.5 5.9 6.4 6.5 4.9 5.0 5.0 6.9 5.8 8.7 6.7
TENT 7.5 6.9 7.2 5.7 12.4 6.2 6.3 6.8 6.5 5.9 5.7 6.0 7.9 6.5 9.1 7.1
DUA 7.3 6.2 6.2 5.1 11.9 5.5 5.8 6.2 6.1 5.1 5.1 5.1 7.0 5.8 8.5 6.5
Ours 6.8 6.4 6.5 5.4 11.3 5.9 5.8 6.1 6.0 5.2 5.3 5.3 7.3 6.0 8.3 6.5

Table 5. Error (%) for each corruption in CIFAR-100C severity (Level 1–4) is reported. Source refers to results obtained from a model
trained on clean train set and tested on corrupted test sets. For TENT and DUA, we use the WRN-40-2 from their official implementation.
Lowest error is highlighted for each corruption.

Methods gaus shot impul defcs gls mtn zm snw frst fg brt cnt els px jpg Avg.

Level 4

Source 60.7 51.6 47.9 27.1 54.4 30.3 28.9 37.4 39.0 35.4 27.2 35.9 34.4 39.0 40.1 39.3
NORM 42.6 39.9 41.6 29.2 45.9 31.4 30.9 38.0 35.2 36.0 28.1 31.7 35.7 32.6 41.9 36.1
TENT 38.9 36.3 36.6 27.3 42.0 28.9 28.4 34.8 32.8 32.1 26.3 29.8 33.3 29.9 38.4 33.1
DUA 43.0 39.0 37.9 26.9 44.7 29.5 28.3 36.5 34.3 33.8 26.6 31.0 33.8 31.0 38.9 34.3
Ours 36.8 33.9 32.4 26.3 39.8 28.1 27.8 32.4 30.9 30.4 25.4 27.6 33.0 27.8 36.8 31.3

Level 3

Source 55.2 45.9 36.9 25.7 39.9 30.5 27.4 33.3 38.1 29.5 25.5 30.5 28.6 30.3 38.0 34.4
NORM 40.7 37.7 35.6 28.2 38.7 31.3 29.9 35.1 35.4 32.4 27.6 30.5 31.7 30.5 40.4 33.7
TENT 37.1 34.3 32.0 26.1 34.6 29.2 27.7 32.3 32.3 29.0 25.6 28.4 29.2 28.3 37.4 30.9
DUA 40.8 36.5 32.2 25.3 37.0 29.6 27.1 32.7 34.4 29.0 25.2 28.6 28.4 28.7 37.3 31.5
Ours 35.3 32.5 28.9 25.2 33.5 27.8 26.4 30.0 30.6 27.9 24.8 26.5 28.8 26.8 35.7 29.4

Level 2

Source 44.6 34.5 30.7 24.3 41.5 27.7 26.2 32.7 31.8 26.8 24.4 27.5 27.9 28.0 36.5 31.0
NORM 36.2 32.3 32.2 27.6 38.0 29.5 29.2 33.2 32.6 29.6 27.5 29.5 31.4 30.5 38.7 31.9
TENT 33.3 29.5 28.8 25.7 34.9 27.4 27.0 30.6 29.6 27.0 25.4 27.3 29.1 27.6 36.3 29.3
DUA 35.9 31.2 28.8 24.1 36.9 27.2 26.0 32.2 30.9 26.1 24.0 26.6 27.9 27.6 35.9 29.4
Ours 31.9 28.3 27.3 24.9 33.3 26.3 26.1 28.8 28.4 26.2 24.5 25.9 28.3 26.5 34.5 28.1

Level 1

Source 34.4 29.6 26.9 23.8 42.9 25.6 26.1 26.1 27.4 24.0 23.8 24.3 28.4 25.2 32.4 28.1
NORM 32.2 30.5 29.3 27.3 37.7 28.3 28.7 29.4 29.8 27.6 27.5 27.9 32.3 29.0 35.2 30.2
TENT 29.3 27.6 26.9 25.5 34.7 26.6 26.7 27.0 27.3 25.6 25.2 26.0 29.8 26.7 32.9 27.9
DUA 31.2 28.5 26.4 23.8 36.9 25.3 25.9 26.2 27.1 24.1 23.9 23.9 28.6 25.4 32.0 27.3
Ours 28.1 26.9 25.9 24.6 33.1 25.8 25.6 25.9 26.5 24.6 24.5 25.2 29.4 25.9 31.2 26.9



Table 6. Error (%) for each corruption in ImageNet-C severity (Level 1–4) is reported. Source refers to results obtained from a model
pre-trained on ImageNet and tested on corrupted test sets. For TENT and DUA, we use the ResNet-18 from the RobustBench. Lowest
error is highlighted for each corruption.

Methods gaus shot impul defcs gls mtn zm snw frst fg brt cnt els px jpg Avg.

Level 4

Source 92.8 93.5 96.0 90.2 82.0 85.9 78.6 86.8 87.8 99.1 65.7 99.5 56.2 57.2 52.5 81.6
TTT 64.5 68.2 70.6 84.5 68.7 69.7 64.7 81.4 72.8 94.8 48.5 98.8 49.5 49.1 47.1 68.9
NORM 59.3 61.2 60.0 65.6 59.1 61.1 58.9 66.5 62.8 69.2 53.4 72.3 51.1 51.3 51.2 60.2
TENT 58.2 58.8 58.5 66.0 59.4 59.4 60.6 60.2 61.8 59.7 52.7 91.4 51.9 51.9 51.9 60.2
DUA 66.0 67.8 66.2 86.1 71.3 78.0 71.2 78.7 73.7 80.8 57.1 99.2 53.7 55.8 51.8 70.5
Ours 53.8 54.0 53.7 64.1 58.4 58.0 59.0 59.1 60.6 60.4 51.2 67.3 50.3 51.1 50.7 56.8

Level 3

Source 78.9 80.5 85.2 85.4 76.5 77.8 75.7 77.3 86.2 98.8 56.7 98.9 53.9 54.1 51.4 75.8
TTT 57.2 55.8 58.0 76.8 60.9 61.9 61.1 70.8 70.3 93.7 43.4 96.9 48.4 46.3 43.8 63.0
NORM 55.2 55.7 56.9 59.4 56.1 55.3 56.4 60.5 62.1 67.2 51.2 60.2 50.5 50.5 50.8 56.5
TENT 54.6 54.5 55.5 59.8 57.0 56.2 58.5 56.5 61.1 59.3 51.2 71.6 51.2 50.9 51.3 56.6
DUA 60.6 61.5 61.7 78.5 67.1 69.4 68.9 70.4 72.4 79.5 53.1 94.4 52.2 53.4 51.0 66.3
Ours 51.3 51.0 52.2 57.3 56.0 54.8 56.9 55.5 60.3 59.2 49.4 59.2 49.3 49.9 50.0 54.2

Level 2

Source 61.9 66.5 75.1 76.2 68.8 68.3 70.4 73.7 77.0 96.7 51.6 95.4 71.5 52.4 51.0 70.4
TTT 51.8 49.6 52.7 66.5 56.3 54.0 56.8 65.4 67.0 87.6 41.4 87.8 60.7 44.2 43.5 59.0
NORM 52.0 52.6 55.7 54.0 52.3 52.4 54.1 56,4 57.4 62.0 50.0 55.9 68.7 50.0 50.3 54.9
TENT 52.1 52.7 54.1 54.6 53.5 52.6 55.3 54.7 57.3 57.4 50.7 59.5 70.4 50.9 51.4 55.2
DUA 54.6 56.6 58.6 67.6 61.3 62.4 64.3 66.3 65.7 73.6 50.3 83.1 70.8 51.6 50.4 62.5
Ours 49.5 50.1 51.4 52.8 51.8 51.7 53.8 53.2 55.8 56.8 48.9 54.8 66.3 48.8 49.3 53.0

Level 1

Source 51.8 53.7 60.4 69.3 61.1 60.1 65.0 60.1 59.4 91.0 49.1 84.9 56.3 51.6 50.5 61.6
TTT 44.4 45.1 49.0 58.2 47.2 52.7 53.5 53.1 48.8 78.0 40.9 72.1 49.0 49.2 49.6 52.7
NORM 50.6 50.6 53.6 52.1 50.9 50.6 52.9 53.0 52.3 57.3 49.8 53.3 54.4 49.7 50.1 52.1
TENT 51.5 51.2 52.4 52.7 51.6 51.3 53.9 52.4 53.0 55.4 50.0 56.1 55.1 50.3 50.4 52.5
DUA 50.3 51.6 54.1 61.5 57.7 57.0 61.5 56.6 54.5 67.6 48.9 74.0 55.2 51.1 50.2 56.8
Ours 49.0 49.1 50.5 51.5 49.9 50.2 52.0 51.0 50.8 54.7 48.4 52.8 52.4 48.9 49.0 50.7


	. More Details on the Hebbian Learning
	. More Implementation Details
	. More Experimental Results

