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A. Implementation Details

We reproduce four previous self-supervised learning
methods, including two contrastive learning methods tai-
lored to point clouds (PointContrast [6] and STRL [4]), as
well as two general methods (BYOL [3] and SwAV [2] ).
General Configurations. We adopt the standard SST as
the backbone. For the Waymo Open Dataset [5], the point
cloud range is set to [-74.88m, 74.88m] for X-axes and Y-
axes, [-2m, 4m] for Z-axes, and the voxel size is set to
(0.32m, 0.32m, 6m). For nuScenes Dataset [1], the point
cloud range is set to [-51.2m, 51.2m] for X-axes and Y-axes,
[-5m, 3m] for Z-axes, and the voxel size is set to (0.256m,
0.256m, 8m). For all the methods, the pretaining learning
rate is initialized as 1e-5, and the fine-tuning learning rate
is initialized as 1e-4. We use the adam optimizer and the
cosine annealing learning scheme. The models are trained
with the batch size 64.
PointContrast. We first transform the original point
cloud into two augmented views by random geometric
transformations, which include random flip, random scaling
with a scale factor sampled uniformly from [0.95, 1.05] and
random rotation around vertical yaw axis by an angle be-
tween [-15, 15] degrees. The scenes will be passed through
the SST backbone to obtain voxel-wise features. We ran-
domly select half of the voxel features and then embed them
into latent space by using a two-layer MLP (with Batch-
Norm and ReLU, and the dimensions are 128, 64). The la-
tent space feature will be concatenated with initial features
and passed through a one-layer MLP with dimension 64.
The concatenated features are used for comparative learn-
ing as in the original PointContrast.
BYOL. BYOL consists of two networks, an online net-
work and a target network. It iteratively bootstraps the out-
puts of the target network to serve as targets without using
negative pairs. We train its online network to predict the tar-
get network’s representation of the other augmented view of
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the same 3D scene. We pass the voxel-wise features through
a two-layer MLP (with dimensions 512, 2048). After that,
a two-layer MLP (with dimensions 4096, 256) predictor in
the online network will project the embeddings into a latent
space as the final representation of the online network. The
target network is updated by a slow-moving averaging of
the online network with parameter 0.999. For other config-
urations, we follow the settings in the original paper.
SwAV. Different from contrastive learning methods,
SwAV does not directly compare embedding features by
introducing prototypes and swapped predictions. Similar
to the implementation of PointContrast, we apply the same
view generation module and obtain voxel-vise features of
different views. We adopt a two-layer MLP projection head
with dimensions 512 and 128. We then compute “codes”
by assigning features to prototype vectors. Note that we do
not adopt multi-crop strategy proposed in the original paper
due to the differences between images and point clouds.
STRL. STRL learns invariant representations from two
augmented views, which are obtained by spatial aumenta-
tion and temporal sampling. For spatial data augmentation,
we adopt the same generation approach in PointContrast.
For temporal sampling, we follow the settings in the original
paper. We add a max-pooling layer at the end of the back-
bone to obtain the global features. The global features are
passed through a projector and a predictor for contrastive
learning.

B. Visualizations of Centroid Prediction

In this section, we provide examples of a centroid pre-
diction visualization on the nuScenes validation set. Fig-
ure. 1 shows the original point clouds. Figure. 2, 4 and 6
show the centroid of points inside each non-empty voxels
in the bottom, middle, and top level separately. The blue
dots stand for the visible (unmasked) centroids and the gray
dots stand for the masked ones (we only predict and super-
vise the masked centroids). Figure. 3, 5 and 7 show the
centroid prediction outputs of our GeoMAE in the bottom,



Figure 1. An original point cloud scene in the nuScenes validation set.

middle, and top level respectively. These figures show that
compared to the middle and top levels, the GeoMAE re-
constructs more accurate centroids in the bottom level. For
instance, the gray dots in the blue boxes are masked voxel
centroids of point clouds whose shape is an occluded vehi-
cle. The centroids we predicted in Figure. 3 (bottom level)
are closer to the ground truth than those in Figure. 7 (top
level), especially in the height dimension. This is because
the bottom level has a more fine-grained voxel sub-division
(144 sub-voxels) than the top level (1 voxel). All those vi-
sualizations also indicate the essentials of the pyramid pre-
diction strategy, which encourages the model to capture the
geometry features coarse to fine.
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Figure 2. Voxel centroids in the bottom level. Blue dots stand for the visible (unmasked) ones and gray dots stand for the masked ones.

zoom in

Figure 3. The prediction outputs of the masked centroids in the bottom level. Gary dots stand for the ground truth and red dots stand for
the prediction results.



Figure 4. Voxel centroids in the middle level. Blue dots stand for the visible (unmasked) ones and gray dots stand for the masked ones.
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Figure 5. The prediction outputs of the masked centroids in the middle level. Gary dots stand for the ground truth and red dots stand for
the prediction results.



Figure 6. Voxel centroids in the top level. Blue dots stand for the visible (unmasked) ones and gray dots stand for the masked ones.
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Figure 7. The prediction outputs of the masked centroids in the top level. Gary dots stand for the ground truth and red dots stand for the
prediction results.
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