
Appendix for
Multi-Object Manipulation via Object-Centric Neural Scattering Functions

Stephen Tian1* Yancheng Cai1* Hong-Xing Yu1 Sergey Zakharov 2

Katherine Liu2 Adrien Gaidon2 Yunzhu Li 1 Jiajun Wu1

1Stanford University 2 Toyota Research Institute

1. Top-down approach baseline

Figure 1. The 20 YCB objects used in the simulated experiments,
rendered with KiloOSF.

We evaluate a top-down approach baseline by substi-
tuting a PoseCNN pre-trained on a subset of YCB ob-
jects to directly regress the pose in place of the perception
module of our pipeline. Over 30 trials in the three object
manipulation setting, our method achieves a final object
position error of 0.078m ± 0.0056 while the PoseCNN
version achieves 0.093m ± 0.0056, where the errors rep-
resent standard error. This experimental setup is slightly
different from that described in Section 5.2 because the
set of objects is further restricted to those that PoseCNN
was pre-trained on. While PoseCNN often pro- duces rea-
sonable pose estimates, it frequently incurs large errors in
orientation and false detections.

2. KiloOSF Training Details
We use the implementation of KiloOSFs implemented

by Gao et al. [3], which is in turn based on the origi-
nal implementation of KiloNeRF [8]. We use identical
hyperparameters for NeRF training as the NSVF objects
from the original KiloNeRF implementation (see an ex-
ample here), except during the pretraining phase, we use
num samples per ray of 64, and train for 100000 iterations as opposed to 600000 as we find that this is sufficient for
our experiments.

For each object, the training data consists of 1000 simulated images with 256 × 256 resolution, each with a randomized
camera viewpoint and light pose. For each object, the camera points at the center of its axis-aligned bounding box. For each
image, the camera yaw is uniformly drawn from [0, 2π], pitch is uniformly drawn from [−π/2, 0], and the distance of the
camera to the bounding box center is drawn uniformly from [0.25, 0.4] (meters). The roll is always set to 0. The light source
always points at the origin. The light position is randomized by drawing a vector uniformly from [−20, 20], [−20, 20], [5, 10]
and normalizing.

Training was conducted on NVIDIA TITAN RTX and RTX 3090 GPUs.

3. Inverse Parameter Estimation Details
We use CMA-ES [4] to perform inverse parameter estimation. Specifically, we leverage the implementation from the

open-source Python library cmaes [9]. For all experiments, we render images at and perform optimization using 128× 128

*indicates equal contribution. YC is affiliated with Fudan University; this work was done while he was a summer intern at Stanford.

1

https://github.com/creiser/kilonerf/blob/master/cfgs/paper/distill/Synthetic_NSVF_Robot.yaml


resolution.

3.1. Object Pose Estimation

We initialize object pose estimation as as a 7 ∗ num objects dimensional optimization problem, with each 7D vec-
tor representing the position and unnormalized quaternion of a single object. Each object position is constrained to be in
[−0.5, 0.5], [−0.5, 0.5], [0, 0.1], and each dimension of the quaternion is constrained to be in [−0.3, 0.3] before being nor-
malized to a unit quaternion.

For the CMA parameters, we use the following settings for each experiment:

• Object masks for all frames (2 and 4 object settings): For initial pose estimation at the first planning step, we
initialize σ = 0.2 and use a population size of 500 for 10 iterations. For the following steps, we initialize CMA using
the best parameters from the previous step and use σ = 0.01, using a population size of 50 for 2 CMA iterations.

• Object masks in only initial frame (3 object setting): For initial pose estimation at the first planning step, we
initialize σ = 0.2 and use a population size of 1000 for 20 iterations. For the following steps, we initialize CMA using
the best parameters from the previous step and use σ = 0.01, using a population size of 500 for 2 CMA iterations.

We find that these perform similarly, but the latter is more computationally expensive as the number of optimization
samples required to optimize the appearance-based MSE loss is higher.

3.2. Light Pose Estimation

For light pose estimation, we initialize the CMA optimizer with bounds [−1, 1], [−1, 1], [0, 1], and then perform 3 itera-
tions of CMA with population size 50, starting from σ = 0.8.

4. Dynamics Model Training Details and Architecture
Our dynamics model is based on PropNet [6] and contains several modules. It is shown in Figure 3. We detail the

architecture of these modules below:

• Node Encoder: A three-layer MLP with hidden sizes [128, 128], with LeakyReLU activations after each layer. In ad-
dition to the corresponding object pose, for every object the node encoder receives as input the action of the cylindrical
pusher object, along with a binary indicator of whether or not the object is the pusher, and two 3D coordinates describ-
ing the maximum and minimum of xyz coordinates of the object bounding box vertices, as determined by KiloOSF
occupancy.

• Edge Encoder: A three-layer MLP with hidden sizes [128, 128], with LeakyReLU activations after each layer.

• Edge Propagator: A single linear layer with output size 128 and a LeakyReLU activation.

• Node Propagator: A single linear layer with output size 128, followed by a residual connection and then a LeakyReLU
activation.

• Node Predictor: A two-layer MLP with hidden size 128 and a single LeakyReLU activation after the first linear
transformation.

We generate edges based on whether the distance between objects is larger than the largest axis of the axis-aligned bound-
ing box of both objects plus ϵ = 0.03. We propagate edge effects as described in [6] for 3 iterations. While the pose of the
pushing cylinder is input into the model, we do not use the model’s prediction for its next pose and instead directly compute
its future pose based on the action by integrating the specified velocity over the action duration.

Explicitly, to compute the loss for training the 3-step dynamics model given ground truth object states and actions from
four consecutive timesteps s1, a1, s2, a2, s3, a3, s4, we roll out the dynamics model autoregressively to predict ŝ2, ŝ3, ŝ4. The
loss is then MSE(s2, ŝ2) + MSE(s3, ŝ3) + MSE(s4, ŝ4).

When training, we use the Adam optimizer [5] with a learning rate of 3e−4 and batch size of 32. We perform multi-step
prediction by autoregressively rolling out model predictions for 3 steps before calculating the loss averaged over those steps.
This makes the model more resistant to accumulating errors when performing prediction for multiple steps.

5. Model-Predictive Control Implementation Details



Camera view 3
Camera view 1

Camera view 2

Light source

Figure 2. Real robot setup.

Figure 3. The structure of the GNN dynamics model. Within a time
step, we loop over propagators multiple times to address multi-step
force transfer when more than two objects interact.

We use model-predictive path integral (MPPI) [10] to
plan action sequences. We plan using a horizon of 30
steps, setting the MPPI parameter γ = 10. For sam-
pling, we draw 800 actions in the 3 object settings and
400 actions for the 2 and 4 object settings using a cor-
related noise sampler (introduced and described in detail
in Nagabandi et al. [7]) that samples Gaussian noise from
N (µ = 0, σ2 = 0.04) independently across action dimen-
sions, but with a correlation coefficient β = 0.5 between
the action at each step and the previously sampled step. In-
creasing the number of action samples only improves the
planning performance and we find that values over 400
seem to be satisfactory for our tasks.

We perform replanning after each action taken in the
environment, and warm-start the mean of action samples
at the next step using the remaining plans from the previ-
ous step.

6. Real Robot Demo
Please refer to the supplementary video for a demonstration of our method on a real robot.
We use a ViperX300 6-DoF robot arm with the end-effector modified to support a cylidrical pusher as in our simulated

experiments. We use OSFs trained on simulated data, and real YCB objects as the experimental objects. We cover the robot
tabletop with curtains to reduce the influence of external light, and light the area with a rectangular BIGSUN Q953 spotlight.
We record visual observations using 3 Logitech C922 Pro webcams, at 640× 480 resolution. Our setup is shown in Figure 2.

We perform camera calibration by computing relative camera poses by collecting a series of images from varying camera
poses, and applying COLMAP. We then determine the camera-to-world transform by solving the PnP problem for a particular
viewpoint.

For the real robot demo, we perform open-loop control, that is, we plan a sequence of control actions based on the initial
estimates of lighting and object pose, and directly roll out the action sequence using the robot.

7. Lighting & Pose Estimation with Real Images
For real-world lighting and pose estimation, we take images using the physical setup described above. We resize all images

to 128×128 before performing inverse parameter estimation, and render KiloOSF images during the optimization procedure



at 128× 128 as well.
For lighting estimation, we parameterize the light as a 7D vector containing the light position, look at point, and intensity.

We set the CMA optimizer to optimize scaled versions of these values (∗10 for the light position and look at point, and ∗3/20
for the intensity) and then optimize with bounds [−20, 20], [−20, 20], [0, 40], [−20, 20], [−20, 20], [−20, 20], [0, 20]. This is
to encourage the variances of each of the optimization variables to be at a similar scale. Optimization is initialized at (scaled)
values [0, 0, 20, 0, 0, 0, 15]. We perform 50 CMA-ES iterations at a population size of 15, with initial σ = 7.5.

For object pose estimation, we use the same parameterization as described previously. We initialize the object pose
estimates with estimates from the pretrained PoseCNN provided here. We then use 125 CMA-ES iterations with population
size 15 and initial σ = 0.05. The loss is the summed intersection-over-union (IOU) of the provided object masks and masks
computed during compositional KiloOSF rendering, summed over objects and viewpoints.

8. Environment and Data Collection
Our simulated environment is built using PyBullet [2]. We use a time step of 50/240 as the length of each action. During

random data collection, we randomly initialize the position of 3 objects between x and y positions of [−0.15, 0.15], [−0.15, 0.15]
and a random z-axis rotation between [0, 2π], and allow them to fall to the surface of the table by waiting for 1000
simulation steps before the trajectory begins. Then we sample 50 steps of random uniform velocities for the pusher in
[−0.3, 0.3], [−0.3, 0.3].

We use a subset of 18 YCB objects [1], that are enumerated below. We select objects that are larger, rigid, opaque, and
non-articulated.

1. 002 master chef can

2. 003 cracker box

3. 004 sugar box

4. 006 mustard bottle

5. 007 tuna fish can

6. 008 pudding box

7. 009 gelatin box

8. 010 potted meat can

9. 011 banana

10. 019 pitcher base

11. 021 bleach cleanser

12. 022 windex bottle

13. 024 bowl

14. 029 plate

15. 036 wood block

16. 071 nine hole peg test

17. 072a toy airplane

18. 073g lego duplo

9. Computational Cost
The training time for KiloOSF for a single object is about 7 hours wall clock time using a single NVIDIA TITAN RTX

GPU. During inference (control) time, performing a single compositional render is on the order of magnitude of 100ms for
a three-object scene. As a result the initial pose estimation is on the order of 30 minutes of wall-clock time, and subsequent
pose updates 3-5 minutes of wall-clock time. Combining our method with a top-down approach described previously has the
potential to significantly improve sample efficiency, and is an exciting direction for future work.

References
[1] Berk Calli, Arjun Singh, Aaron Walsman, Siddhartha Srinivasa, Pieter Abbeel, and Aaron M Dollar. The YCB object and model

set: Towards common benchmarks for manipulation research. In 2015 international conference on advanced robotics (ICAR), pages
510–517. IEEE, 2015. 4

[2] Erwin Coumans and Yunfei Bai. PyBullet, a python module for physics simulation for games, robotics and machine learning. 2016.
4

[3] Ruohan Gao, Zilin Si, Yen-Yu Chang, Samuel Clarke, Jeannette Bohg, Li Fei-Fei, Wenzhen Yuan, and Jiajun Wu. Objectfolder 2.0:
A multisensory object dataset for sim2real transfer. In CVPR, 2022. 1

[4] Nikolaus Hansen, Sibylle D. Müller, and Petros Koumoutsakos. Reducing the time complexity of the derandomized evolution strategy
with covariance matrix adaptation (cma-es). Evolutionary Computation, 11(1):1–18, 2003. 1

[5] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014. 2
[6] Yunzhu Li, Jiajun Wu, Jun-Yan Zhu, Joshua B Tenenbaum, Antonio Torralba, and Russ Tedrake. Propagation networks for model-

based control under partial observation. In 2019 International Conference on Robotics and Automation (ICRA), pages 1205–1211.
IEEE, 2019. 2

https://github.com/yuxng/PoseCNN


[7] Anusha Nagabandi, Kurt Konolige, Sergey Levine, and Vikash Kumar. Deep dynamics models for learning dexterous manipulation.
In Conference on Robot Learning, pages 1101–1112. PMLR, 2020. 3

[8] Christian Reiser, Songyou Peng, Yiyi Liao, and Andreas Geiger. KiloNeRF: Speeding up neural radiance fields with thousands of
tiny mlps. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 14335–14345, 2021. 1

[9] Masashi. Shibata. Cma-es. https://github.com/CyberAgentAILab/cmaes, 2022. 1
[10] Grady Williams, Andrew Aldrich, and Evangelos Theodorou. Model predictive path integral control using covariance variable

importance sampling. arXiv preprint arXiv:1509.01149, 2015. 3

https://github.com/CyberAgentAILab/cmaes

	. Top-down approach baseline
	. KiloOSF Training Details
	. Inverse Parameter Estimation Details
	. Object Pose Estimation
	. Light Pose Estimation

	. Dynamics Model Training Details and Architecture
	. Model-Predictive Control Implementation Details
	. Real Robot Demo
	. Lighting & Pose Estimation with Real Images
	. Environment and Data Collection
	. Computational Cost

