
Co-training 2
L Submodels for Visual Recognition

supplemental material

A. Training details

A.1. Hyperparameters

We use by default the DeiT-III training procedure from

Touvron et al. [51], which uses separate recipes for Im-

agenet1k and Imagenet21k. The most noticeable differ-

ence is the loss, which is by default a binary cross-entropy

when training on Imagenet1k, versus a cross-entropy when

pre-training with Imagenet21k and fine-tuning with Ima-

genet1k. We depart from the choices of DeiT-III as follows.

First, we systematically set the weight decay to 0.02, inde-

pendent of whether we pre-train on Imagenet21k or train or

fine-tune on Imagenet1k. This does not change significantly

the results with cosub. Our long schedule on Imagenet21k

is systematically set to 270 epochs.

Batch size and learning rate. Second, the default batch

size is by default set to 2048. However we need to reduce

it to limit the memory consumption for larger models or

higher resolution. In particular, during the fine-tuning stage

we adjust the learning accordingly and employ a square-

root scaling rule compatible with AdamW [36]: we fix the

base learning rate as

LRtrain = 10−3

√

BS

2048
, (A.1)

for pre-training on Imagenet21k with 90 epochs or training

on Imagenet1k from scratch (400 or 800 epochs). When

fine-tuning from Imagenet21k to Imagenet1k, we divide by

10 the base learning rate when starting from an existing

model. Therefore we set

LRfinetune = 10−4

√

BS

2048
× CLD, (A.2)

where we set the constant CLD =1 by default. This constant

is modified when using LayerDecay [10], see below.

LayerDecay is used in fine-tuning stages of recent self-

supervised methods [5, 22]. It decreases the learning rate

in a geometrically decreasing manner: the learning for each

block l is given by LR(l) = LDl−L, where LR is the layer-

wise decay factor, and L is the total number of blocks of

the network (e.g., 32 for a ViT-H). Hence the LR of the all

layers is affected, except those in the final block.

model ViT-S ViT-M ViT-B ViT-L ViT-H

τ : Imnet1k train 0.05 0.1 0.2 0.45 0.6

τ : Imnet21k pre-train 0.05 0.05 0.1 0.3 0.5

LayerDecay 0.7 0.75 0.75 0.8 0.85

Table A.1. Hyper-parameters that are set depending on the model size.

BeiT sets the LayerDecay parameter to LD = 0.65 or 0.75

based on the model size, like OmniMAE [21]. MAE [22]

sets LD to 0.75. Another recent work uses 0.65 [3].

From our own preliminary experiments, we concur with the

choice of Bao et al. [5], who adjust this parameter depend-

ing on the model size when fine-tuning from Imagenet21k

to Imagenet1k. Hence we gradually increase the LD value

from smaller to larger models. Table A.1 gives the value of

this parameter for each model size.

We set CLD = 2 if we use LayerDecay in the fine-tuning

stage: if a given learning rate was initially optimized with-

out LayerDecay, it is necessary to compensate the overall

reduction of updates. This was suggested by Bao et al. [5],

but without any guideline on how to adjust the learning rate.

From a few experiments, we notice that the simple formu-

laic choice of multiplying the learning by a constant 2 gen-

erally gives reasonable results. They could likely be further

improved by further cross-validation, however this would

require a much heavier set of experiments per model size.

Hyper-parameter τ . The other hyper-parameter that de-

pends on the model size is the so-call drop-path rate τ as-

sociated with stochastic depth [31]. We report these values

in Table A.1. In particular, the value τ is inherently inter-

twined with our approach, as it is used to instantiate sub-

models. A value of τ means that we instantiate two iden-

tical submodels, which zeroes the cross-entropy and there-

fore cancels our method cosub. More generally, higher val-

ues of τ provide submodels that have less layers in com-

mon. Therefore, we observe that it is beneficial to increase

τ compared to the values suggested in the DeiT-III training

method, especially for the smaller model Vit-S for which τ
was initially set to 0. We further increase this rate by +0.05

when more regularization is needed, i.e., when pre-training

during 270 epochs on Imagenet21k or for large resolutions.

A.2. Transfer Learning datasets

For the transfer learning tasks we fine-tune our ViT mod-

els pre-trained at resolution 224×224 on ImageNet-1k only

Dataset Train size Test size #classes

iNaturalist 2018 [30] 437,513 24,426 8,142

iNaturalist 2019 [29] 265,240 3,003 1,010

Flowers-102 [38] 2,040 6,149 102

Stanford Cars [32] 8,144 8,041 196

CIFAR-100 [33] 50,000 10,000 100

CIFAR-10 [33] 50,000 10,000 10

Table A.2. Datasets used for our different transfer-learning tasks.

with cosub on the 6 transfer learning datasets used in Tou-

vron et al. [51]. In Table A.2, we give the characteristics of

these datasets and corresponding references.

B. Supplemental experiments

B.1. New baselines for models of the literature

Table B.1 provides the results we obtained with minimal

adjustments to our training recipe based on DeiT-III com-

bined with submodel co-training. The only parameter that

absolutely needs to be re-adjusted is τ . For this purpose, we

first tried existing parameter setting from the literature when

existing (τ = 0 disables cosub therefore we use 0.05 in such

cases). Otherwise we make a guess based on the model size

and adjusts by step of 0.1 when the training curve exihbits

some overfitting. This minimum hyper-parameter modifi-

cation with a coarse step for τ is most likely suboptimal

and could certainly be improved, but it would require much

more compute capacity to optimize it with a proper cross-

validation for each model.

As one can see, our method improves the results for most

of the models from the literature that we tested, therefore

we hope that they could serve as improved baselines when

comparing architectures. We also notice that our results on

Imagenet-v2 are generally better than those reported in the

literature. For instance our ConvNext-B training is compa-

rable to that the original paper on Imagenet-val, but cosub’s

result on Imagenet-v2 is more than 1% higher, which sug-

gests that our training recipe overfits significantly less.

As a disclaimer, we believe that Table B.1 should not

be used as a way to compare the merits of architectures,

since our training procedure may favor certain of them. As

importantly and as mentioned above, we have put a minimal

effort to obtained these results and it is highly likely that our

hyper-parameters are very suboptimal for some models.

B.2. Tradeoffs between resolution and model size

Since both the model size and the resolution increase the

accuracy and the complexity, the question is which com-

bination (model,resolution) we should use. This question

was noticeably analyzed by Bello et al. [6] for ResNet, who

pointed out that the Pareto-optimal resolution is typically

lower than what was employed when the measure of com-

plexity are FLOPS. We report trade-offs for different com-

params FLOPS previous cosub acc.

Model (M) (×109) top1 acc. -val -v2

ResNet-152 [24] 60 11.6 82.0(1k) [55] 83.1 73.1

RegNet-16GF [42] 84 16.0 82.2(1k) [55] 84.2 74.7

PiT-B -distilled [26] 74 12.5 84.5(1k) 85.8 76.8

ConvNext-S [35] 50 8.7 83.1(1k) 85.2 76.0

ConvNext-B [35] 89 15.4 85.8(21k) 85.8 76.9

XCiT-S12 [17] 26 4.9 83.3(1k) 84.2 74.9

XCiT-M24 [17] 84 16.2 84.3(1k) 86.5 77.9

XCiT-L24 [17] 189 36.1 84.9(1k) 87.2 77.8

Swin-B [34] 88 15.4 85.2(21k) 86.2 77.2

Swin-L [34] 197 34.5 86.3(21k) 87.1 78.1

Table B.1. New baselines for multiple architectures at resolution 224:

trained with cosub on Imagenet21k data. We adopt the same pre-training

recipe (90 epochs of Imnet21k pretraining and 50 epochs of fine-tuning)

and adjust the τ parameter per architecture based on prior choices or best

guess based on model size. These choices could most likely be improved

by cross-validated grid search. We report good results reported in literature

(in some cases obtained by training on Imagenet-train only:(1k))

plexity measures in Figure B.1, see also Table 9 in the main

paper. Selecting a ViT operating at resolution 224 gener-

ally seems a good strategy. It is unclear whether this choice

is absolutely good, or if it is better just because most of

the hyper-parameter tuning effort in this paper and previous

ones has been carried out at this specific resolution.

B.3. Comparison with BerTlike approaches

Although it is fully supervised, our cosub method shares

some similarities with purely self-supervised approaches

such as DINO [9], MAE [22], or BeiT [5]. Indeed, the co-

sub loss on submodels can be seen as an unsupervised or

self-supervised loss. In contrast to cosub, DINO does not

backpropagate on the model that serves as a teacher, since

this one is obtained by EMA: we cannot differentiate be-

cause it is based on past models that are not stored anymore.

In Table B.2 we compare cosub with BerT-like pre-

training approaches as they are known to be very effective

with vision transformers. We find that our approach out-

performs these competitive approaches when we can pre-

train on Imagenet21k. Our cosub approach could poten-

tially be used for unsupervised training, or to finetune self-

supervised models: for instance, BeiT is typically fine-

tuned on Imagenet-21k during a large number of epochs.

We leave this exploration to future work.

B.4. Significance of the results

We measure avg/std for a few points. Since computing

multiple results for each number of Table 1 requires a lot of

resources, we measure the uncertainty in a cheaper setting:

we train during 400 epochs for 5 seeds (0 – 4) at resolution

112. The results in top-1 accuracy are as follows:

Vit-S@112 Vit-B@112 Vit-L@112 Vit-H@112

baseline 72.63±0.367⋆ 77.03±0.122 79.46±0.130 80.94±0.066
cosub 73.15±0.098 77.75±0.098 80.64±0.150 82.29±0.088

⋆: This high std-dev is due to a single underperforming model. Best seed gets 72.83.

 78

 80

 82

 84

 86

 88

 112 224 336 448

Im
ag

en
et

-v
al

 t
o
p
1
 a

cc
.

Image size

Vit-S
Vit-M
Vit-B
Vit-L
Vit-H

 78

 80

 82

 84

 86

 88

 1 4 16 64 256

GFLOPS

Vit-S

Vit-M

Vit-B

Vit-L

Vit-H
 78

 80

 82

 84

 86

 88

50 100 200 500 1000 2000 5000

Throughput (images/s)

Vit-S
Vit-M
Vit-B
Vit-L
Vit-H

 78

 80

 82

 84

 86

 88

 256M 1GB 4GB 16GB

Peak memory

Vit-S
Vit-M
Vit-B
Vit-L
Vit-H

 66

 68

 70

 72

 74

 76

 78

 80

 112 224 336 448

Im
ag

en
et

-v
2
 t

o
p
1
 a

cc
.

Image size

Vit-S
Vit-M
Vit-B
Vit-L
Vit-H

 66

 68

 70

 72

 74

 76

 78

 80

 1 4 16 64 256

GFLOPS

Vit-S

Vit-M

Vit-B

Vit-L

Vit-H
 66

 68

 70

 72

 74

 76

 78

 80

50 100 200 500 1000 2000 5000

Throughput (images/s)

Vit-S
Vit-M
Vit-B
Vit-L
Vit-H

 66

 68

 70

 72

 74

 76

 78

 80

 256M 1GB 4GB 16GB

Peak memory

Vit-S
Vit-M
Vit-B
Vit-L
Vit-H

Figure B.1. Flops/accuracy trade-offs: We measure the accuracy on (top) Imagenet1k-val and (bottom) Imagenet-v2 as a function of different measures of

complexity, which we vary for each model by increasing the resolution: 112× 112, 224× 224, 336× 336, 448× 448 (except for ViT-H, where we stop at

224× 224). All those models were pre-trained on Imagenet21k and fine-tuned on Imagenet1k.

C. Efficient stochastic depth

Quantization of stochastic depth rate. Our ESD variant

of stochastic depth determines a reduced batch size per GPU

as follows: we multiply the input local batch size per GPU

(LBS) by the requested drop-path hyper-parameter τ , which

produces the actual local batch size as

LBSESD = ⌊τ × LBS⌋. (C.1)

If LBS is large enough, this rounding has little effect. How-

ever, for large models or high-resolution images, the local

batch size can become small, thereby leading to a more ag-

gressive rounding when computing LBSESD. This leads

to a coarse approximation of the stochastic depth param-

eter τ , as shown in Figure C.1. For example, for a local

GPU batch size of 8, the only possible values of τ are:

τ ∈ {0, 0.125, 0.250, 0.375, 0.5, 0.625, 0.75, 0.875, 1}, be-

cause the actual batch size is floored to an integer. In this

figure, we report the mapping between the effective drop-

rate and the actual one. In practice, this quantization ef-

fect must be taken into consideration in extreme cases (very

large models or higher resolution images). In such cases,

we compute the effective stochastic depth when computing

the ratio 1/(1− τ) for the inference-time model.

0.0 0.2 0.4 0.6 0.8 1.0
Stochastic-depth drop-rate

0.0

0.2

0.4

0.6

0.8

1.0

Q
u
an

ti
ze

d
 d

ro
p
-r

at
e

Batch size/GPU: 128
Batch size/GPU: 32
Batch size/GPU: 8
Batch size/GPU: 2

Figure C.1. Efficient stochastic depth: we measure the effect of quantiza-

tion on the effective drop path rate depending on the batch-size.

Complementary complexity measurements. We can

optimize the setting for ESD by using a larger batch size or

less nodes. Below we report measurements repeating and

complementing Table 7:

Setting #GPUs (V100) batch size peak Mem time/epoch

Vit-L baseline 4× 8 2048 22.5 GB 8 min 56 s

Vit-L ESD 4× 8 2048 15.1 GB 9 min 05 s

Vit-L ESD 2× 8 2048 26.9 GB 15 min 30 s

Vit-L ESD 4× 8 4096 27.0 GB 7 min 50 s

Model Method
#pretraining #finetune ImageNet

epochs epochs val Real V2

Im
n

et
-1

k
p

re
-/

tr
ai

n
in

g ViT-B

BeiT
300 100(1k) 82.9

800 100(1k) 83.2

MAE⋆ 1600 100(1k) 83.6 88.1 73.2

400(1k) 20(1k) 83.8 88.6 73.5
Ours

800(1k) 20(1k) 84.2 88.5 74.2

ViT-L

BeiT 800 30(1k) 85.2

MAE

400 50(1k) 84.3

800 50(1k) 84.9

1600 50(1k) 85.1

MAE⋆ 1600 50(1k) 85.9 89.4 76.5

400(1k) 20(1k) 85.0 89.4 75.5
Ours

800(1k) 20(1k) 85.3 89.2 75.5

Im
n

et
-2

1
k

p
re

-t
ra

in
in

g

ViT-B

BeiT
150 50(1k) 83.7 88.2 73.1

150 + 90(21k) 50(1k) 85.2 89.4 75.4

90(21k) 50(1k) 86.0 89.8 77.0
Ours

270(21k) 50k) 86.3 89.7 77.0

ViT-L
BeiT

150 50k) 86.0 89.6 76.7

150 + 901k) 50k) 87.5 90.1 78.8

Ours 901k) 50k) 87.5 90.3 79.1

Table B.2. Comparison of self-supervised pre-training with our supervised

approach. All models are evaluated at resolution 224×224. We report im-

age classification results on ImageNet val, real and v2 in order to evaluate

overfitting. (21k) indicate a finetuning with labels on ImageNet-21k and
1k) indicate a finetuning with labels on ImageNet-1k. ⋆ indicates the im-

proved setting of MAE using pixel (w/ norm) loss. MAE training is more

efficient for a given number of epochs, thanks to its masking strategy.

0 10 20 30 40 50 60
Number of layers

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

N
u
m

b
er

 o
f
su

b
-m

o
d
el

s
(x
10

18
)

1e18

ViT-H: 64 layers

Figure D.1. Number of submodels with a given number of layers for ViT-H

(32 blocks). τ = 0.5 gives the same probability to instantiate each.

D. Submodel analysis & using more submodels

Number of layers with stochastic depth. In Figure D.1,

we show the number of submodels exist for a given num-

ber of layers. This corresponds to a binomial distribution,

which attains its maximum with 32 layers. Setting τ = 0.5

gives the same probability to instantiate each of those, hence

we can se that it stochastic depth will draw with very high

probability a model that contains about 32 layers.

 83.4

 83.5

 83.6

v
al

 t
o

p
1

 a
cc

.

 72.6

 72.7

 72.8

 72.9

 73

1 8 16 24 32

v
2

 t
o

p
1

 a
cc

.

Figure D.2. Layer ablation: we trim one block (i.e., a multi-head

self-attention and its corresponding “FFN”) of a fixed ViT-H network

126× 126 learned with submodel co-training, and evaluate the perfor-

mance of the L corresponding subnetworks. Variations are overall small

and there is no strong correlation between Imagenet-val and -v2 accuracy.

Layer ablation. Inspired by experiments from Fan et

al. [20], we measure the performance of the submodels pro-

duced when dropping exactly one block (Multi-head soft-

attention and corresponding Feedforward) from a trained

ViT model, in this case a ViT-H trained at resolution

126× 126 on Imagenet1k. Our objective is to measure

whether some layers are more important than others. The

performance of the submodels are reported in Figure D.2.

We observe that almost most of the submodels have al-

most an identical performance on Imagenet1k-val, around

83.55% in top-1 accuracy, close to the performance (83.6%)

of the full 32-blocks/64-layers model.

More submodels. In our paper, all the experiments have

been carried out by considering 2 submodels, as depicted in

Figure 1. Following a suggestion by a reviewer2, we have

also considered an extension with 3 submodels. In this case

the number of distillation terms is more important: the ex-

tension of Equation 2 gives 6 distillation terms, versus 2 in

with two submodels. We ensure that the relative importance

of the actual labels remains the same by providing it a rel-

ative weight of 0.5. All hyper-parameters are kept identical

in this variant. Our small experiments on 112×112 images

trained during 400 epochs seem to indicate a gain:

Vit-S@112 Vit-B@112 Vit-L@112 Vit-H@112

baseline 72.63 77.03 79.46 80.94

cosub – 2 submodels 73.26 77.75 80.69 82.27

cosub – 3 submodels 73.17 78.22 81.29 82.83

However in settings with high-resolution images and

longer training schedules, and similarly on Imagenet21k,

we did not observe any clear advantage of extracting 3 sub-

models instead of 2. Since the complexity is further in-

creased by a factor 1.5, in these settings there is no clear

benefit to go beyond 2 submodels.

2We thank all the reviewers for their constructive comments, their cor-

rections and suggestions.

	. Training details
	. Hyper-parameters
	. Transfer Learning datasets

	. Supplemental experiments
	. New baselines for models of the literature
	. Trade-offs between resolution and model size
	. Comparison with BerT-like approaches
	. Significance of the results

	. Efficient stochastic depth
	. Submodel analysis & using more submodels

