
Connecting Vision and Language with Video Localized Narratives:

Supplemental Material

Paul Voigtlaender Soravit Changpinyo Jordi Pont-Tuset Radu Soricut Vittorio Ferrari

Google Research

{voigtlaender,schangpi,jponttuset,rsoricut,vittoferrari}@google.com

Abstract

We provide here more examples of VidLN annotations.

Additionally, we describe implementation details and addi-

tional experiments for ReferFormer-VNG, and more details

about the VideoQA location-output questions.

1. More Video Localized Narratives Examples

In Figs. 1 to 3, we show more examples of our VidLN

annotations.

2. ReferFormer-VNG

Here we describe implementation details and additional

experiments for ReferFormer-VNG.

2.1. Implementation Details

For simplicity, for the ReferFormer-VNG baseline, we

input only the narrative of one actor at a time (e.g., only the

narrative of “Parrot one” rather than the concatenation of all

narratives of all actors), and the segmentation for each noun

is predicted separately, both during training and inference.

During training, for videos with sparse mask annotations,

we only sample from the frames that have a mask annotated.

For the text encoder, we use a pre-trained RoBERTa [2]

model to extract both per-text-token features and whole-

sentence features.

For the training hyper-parameters, we generally follow

the setup of the original ReferFormer [5], and in the fol-

lowing we will only describe settings that are different. For

fine-tuning on OVIS-VNG, we train for 6 epochs with 8

Tesla V100 GPUs and reduce the learning rate at epochs 3

and 5. For all other training setups, we train for 12 epochs

with 16 Tesla V100 GPUs, and reduce the learning rate at

epochs 8 and 10.

2.2. Additional Experiments

Experiments with Different Backbones. Tab. 1 shows

results for ReferFormer-VNG with different visual back-

bones. Here we use the same backbones that are considered

for the original ReferFormer [5].

The order of training is always (i) initialize the visual

backbone with the checkpoint obtained on the dataset spec-

ified in the column “Initialization Dataset”, (ii) pre-train

for 12 epochs on COCO-PNG, (iii) optionally train for 12

epochs on UVO-VNG, and (iv) optionally fine-tune for 6

epochs on OVIS-VNG. Here, the step (iv) is only option-

ally used for evaluation on OVIS-VNG.

The results for ResNet-50 are the same as in the main

paper and are shown here again for comparison.

Using a large Swin transformer [3] backbone (“Swin-

Large”) pre-trained on the larger ImageNet-21k version

achieves the strongest results for all setups, reaching 40.0
J&F on OVIS-VNG (with fine-tuning) and 55.1 on UVO-

VNG.

Using instead a Video Swin Transformer [4]

(“VideoSwin”), for most setups also achieves stronger

results than the ResNet-50 backbone. However, when ini-

tializing from ImageNet-1k and not training on UVO-VNG,

then no video data (or only for OVIS-VNG fine-tuning)

is used. In this case, the Video Swin Transformer which

is specifically designed for videos, cannot unfold its full

potential and yields relatively weak results. When initializ-

ing from Kinetics, and using UVO-VNG for main-training

with videos, the VideoSwin results are strong, close to the

results of Swin-Large.

The Video Swin Transformer result with initialization on

Kinetics and evaluation on UVO-VNG needs to be taken

with a grain of salt, because the Kinetics [1] training dataset

overlaps with the UVO-VNG test set. However, the task for

Kinetics is action classification, which is very different from

VNG.

Fine-tuning on OVIS-VNG from ImageNet. We per-

form an additional experiment, where we initialize

ReferFormer-VNG’s ResNet-50 backbone on ImageNet

and then directly train on the OVIS-VNG training set and

afterwards evaluate on the OVIS-VNG test set. This setup

achieves a J&F score of 25.1, which is much lower than
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Figure 1. A VidLN example with four actors and background.

the scores of 32.4 with COCO-PNG pre-training and 32.7
with COCO-PNG pre-training and UVO-VNG main train-

ing (see Tab. 1). This result shows that without any other

VNG-related training data, the result greatly suffers.

3. Video Question Answering: Location-

output Questions

Here we explain for the VideoQA location-output ques-

tions, how the approximate square bounding boxes are es-

timated, and how we estimated the precision of the mouse

trace answers.

3.1. Estimation of Approximate Square Bounding
Boxes

For the evaluation of location-output questions, we start

from a location ground truth in the form of a annotator-

verified mouse trace on the object of interest. In order

to evaluate the precision criterion of predicted bounding

boxes, we estimate approximate square bounding boxes

based on the mouse trace segment as follows.

A mouse trace segment only has a notion of a single

scale dimension (its length), not two. Hence, we estimate

a squared box rather than the usual rectangular one. We

start by first fitting a square around the mouse trace seg-

ment (the trace-box, cyan in Fig. 4) by setting its center to
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Figure 2. Another example VidLN annotation.

Backbone
Initialization COCO-PNG UVO-VNG OVIS-VNG

UVO-VNG
Dataset Pre-training Training no ft ft

Swin-Large ImageNet-21k
yes yes 30.7 36.7 42.8

yes no 36.9 40.0 55.1

VideoSwin

ImageNet-1k
yes yes 25.4 28.3 35.9

yes no 26.9 28.5 41.4

Kinetics*
yes yes 31.5 35.9 42.9

yes no 35.5 38.2 53.5

ResNet-50 ImageNet-1k
yes yes 32.0 32.7 46.4

yes no 28.5 32.4 39.6

Table 1. VNG results with other visual backbones. All numbers are J&F scores. The ResNet-50 result of the main paper is also shown

for comparison. “no-ft” and “ft” indicate whether we fine-tuned on the OVIS-VNG training set before evaluating on the OVIS-VNG test

set. *: Note that the videos of the UVO-VNG test set overlap with the Kinetics training set, but the task is different.

the center of mass of the trace and setting its side-length to

the smallest value with which the whole mouse trace seg-

ment is covered by the box. Because the mouse trace only

covers part of the object, this trace-box will likely be too

small. Hence, to obtain the approximate bounding box we

enlarge the side length by a learned transformation.

We learn a quadratic function that performs this trans-

formation on the OVIS-VNG train dataset, as it has ground
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Figure 3. Another example VidLN annotation.

Figure 4. The estimated square bounding box (red) is obtained by

scaling the (square) trace-box (cyan) of the mouse trace (green).

The (unknown) ground truth mask is overlaid in blue and the (rect-

angular) ground truth bounding box is shown in magenta.

truth segmentation masks. The side length x of the trace-

box is the input to the transformation, and the side length

of the perfect square bounding box around the ground truth

segmentation mask is the target output ŷ.

For each noun that has both an associated ground truth

segmentation mask, and a mouse trace, we determine both

the input side length x and the desired output side length

ŷ. Our experiments revealed that the relationship between

x and ŷ is best captured with a quadratic transformation, as

larger x need to be enlarged by a smaller factors than small

x to reach their corresponding ŷ:

f(x) = λ0 + λ1x+ λ2x
2 (1)

with three free parameters λ0, λ1, λ2 ∈ R.

As a loss function for a single training example, we

consider the ratio of the estimated side length f(x) to the

ground-truth one ŷ. This is a scale-invariant measure, and

thus more suitable for the task than an L2 loss:

L(x, ŷ) = max

{

f(x)

ŷ
,

ŷ

f(x)

}

. (2)

Intuitively, the ratio of the predicted side length and the

desired side length should be as close to 1 as possible. The

maximum is necessary to account both for cases where the

prediction is too small and where it is too big. The theoret-

ical minimum of this loss is 1.0.

Finally, we take the geometric mean over the whole

training set with N inputs x1, . . . , xN , and desired outputs
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ŷ1, . . . , ŷN , i.e.,

Ltotal =

(

N
∏

n=1

L(xn, ŷn)

)

1

N

. (3)

We optimize this loss on the OVIS-VNG training set

with batch gradient descent, i.e., in each step the loss is cal-

culated over the whole dataset.

3.2. Precision of Mouse Trace Answers

For the Oops dataset, we do not annotate any seg-

mentation masks. Hence, we instead use the OVIS-VNG

dataset as a proxy to measure mouse trace precision for the

location-output questions of Sec. 5.2 of the main paper. Re-

call from Sec. 3.2 of the main paper that the trace precision,

without manual verification, on OVIS-VNG is 77.3%, i.e.,

77.3% of the trace points are on the correct object mask on

average. However, in Sec. 5.2 the candidate location-output

questions are manually verified by two annotators to ensure

the trace segments are correct (among other criteria). This

increases the average accuracy of the questions that pass

verification. To emulate this verification process on OVIS-

VNG (instead of Oops), we discard trace segments with

a precision of less than 25%. This filtering step removes

roughly 9% of the mouse trace segments and the average

precision of the remaining trace segments is very high at

92.9%. Note that the threshold was chosen conservatively

and our manual verification by two annotators would likely

lead to even higher precision.
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