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1. Anchor Placement
In Figure 1, we demonstrate how anchors are placed

by uniform, grid and Fibonacci samplings. In grid sam-
pling, we first choose all grid points {(x, y, z)|x, y, z ∈
{−0.5,−0.25, 0, 0.25, 0.5}} inside the unit sphere and then
randomly select from remaining grid points to make a total
count of 48. Table 1 shows how different anchor place-
ment strategies affect the construction performance on ABC,
where Fibonacci sampling is slightly better than grid sam-
pling, and significantly better than uniform sampling. In
the early stage of training, Fibonacci sampling exhibits a
clear advantage over other two samplings, as shown in Fig-
ure 3. In Figure 4, we show the curves in the later stage
(from Epoch 100 to 260). We find that grid and uniform
sampling narrow their performance gap between Fibonacci
sampling in the later stage.However, as shown in the test-
ing loss curve, gird sampling suffers from turbulence of the
loss values. In terms of the stability of training process and
the overall performance, Fibonacci sampling is superior to
other two sampling strategies. We leave more comprehensive
investigations on anchor placement as our future work.

2. Adaptive Anchors
As suggested in Table 2, optimizing the anchor positions

in the training stage (the first row) cannot improve the per-
formance of ARO-Net on ABC. In the testing phase, we try
to adjust the anchor positions for each testing case. Specif-
ically, we fix the network parameters, utilize input point
clouds as ground-truth occupancies, and then adjust the an-
chor positions using Gradient Descent algorithm. Table 2
demonstrates that fine-tuning the anchors for 100 iterations
can bring very marginal improvements; 200 iterations will
degrade the performance because of over-fitting.

3. Distance and Direction Information
As shown in Table 3, the reconstruction performance of

ARO-Net drops significantly when we remove r and ∥r∥.
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Figure 1. Visualization of different anchor placement strategies.

Setting LFD↓ HD↓ CD↓ EMD↓ IOU↑
Uniform 1.52 2.32 6.29 1.18 8.67
Gird 1.42 2.20 5.63 1.11 8.76
Fibonacci 1.35 2.25 5.46 1.12 8.79

Table 1. How different anchor placement strategies affect the re-
construction performance.

Adjusting Stage LFD↓ HD↓ CD↓ EMD↓ IOU↑
Training 1.60 2.39 5.98 1.333 8.63
Testing (100) 1.58 2.24 5.44 1.098 8.78
Testing (200) 1.80 2.20 5.75 1.314 8.74
Default (Fixed) 1.35 2.25 5.46 1.121 8.79

Table 2. Adjusting anchor positions in the training or testing stage.
The numbers behind “testing” denote the iteration numbers of
adjusting anchor positions.

Setting LFD↓ HD↓ CD↓ EMD↓ IOU↑
w/o r and ∥r∥ 1.38 2.38 5.94 1.22 8.62
Full model 1.35 2.25 5.46 1.12 8.79

Table 3. Removing the distance (∥r∥) and direction information (r)
in ARO-Net.

Since the prediction of ARO-Net is based on engaging r
and ∥r∥ with the radial observations, missing r and ∥r∥ as
network input would make the prediction more difficult.
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Figure 2. More visual comparisons to state-of-the-art methods on ShapeNet. All methods (except SPR) were trained on chairs in ShapeNet
and tested on other categories with zoom-ins highlighting reconstruction artifacts. BPS generated an empty result for the second case.

Figure 3. How different anchor placement strategies affect network
performance, where anchor count m = 48 for all settings.

4. 2D Experiments

In 2D experiments, we replace the PointNet feature fi
with the hit distance of ri (a ray from anchor ai to query
point) on a given 2D shape S. Specifically, the hit distance
(denoted as di) is calculated from ai to the hit point on
the boundary pixels of S. Note that it is still non-trivial
to reconstruct the 2D shape under this setting because (1)
the occupancy of non-boundary points remains unknown
and (2) the anchors could observe only partial boundaries
because of their count and placement. We send r, ∥r∥, and
d into the network to predict the occupancy. The attention
module consists of 3 encoding layers and 4 attention heads.
When reconstructing the images of 2D shapes, we utilize the
predicted occupancy values to construct the pixel values.

Figure 4. The testing loss for different strategies of anchor place-
ment. The loss is calculated by the cross-entropy between predicted
probability and GT occupancy.

Method ABC Chairs Airplanes

POCO/ARO-Net 1.71/1.35 2.82/1.92 5.l1/3.56

Table 4. Comparison between ARO-Net and POCO.

5. More Comparisons
We compare ARO-Net with a more recent work POCO [1]

using LFD (↓) in Table 4, where ARO-Net has a big advan-
tage in both ABC and ShapeNet Chairs/Airplanes.

In Figure 2 and Figure 5, we provide more visual compar-



isons on ShapeNet and ABC dataset. In Figure 6, we provide
more visual comparisons on one-shape training, and adding
Points2Surf [3] and UNDC [2] into comparisons. ARO-Net
performs significantly better than others in extremely sparse
point clouds (such as the ship and bicycle in Figure 2). ARO-
Net also shows great ability in preserving local details such
as the holes in 1st and 4th examples in Figure 5 and the ears
of horse in Figure 6. Compared to UNDC, ARO-Net can
avoid generating undesired holes on the surfaces. Compared
to Points2Surf and ConvONet, ARO-Net can reconstruct bet-
ter details, smoother surfaces and sharper features. Among
all of these comparisons across a variety of shapes, ARO-Net
achieves the best overall performance.
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Figure 5. More visual comparisons to state-of-the-art methods on ABC with zoom-ins highlighting reconstruction artifacts.
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Figure 6. More visual comparisons on the results obtained by training only on the “fertility” model with rotation and scaling.
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