
In this supplementary material, we present more ex-
perimental quantitative results, a comparison of model
sizes, and visualizations of bounding boxes, all of
which serve to bolster the effectiveness of our proposed
Consistent-Teacher . Furthermore, we provide more
details on our experimental methodology, implementation
information, and hyper-parameter settings. Our code is also
attached for your reference.

1. More details in Consistent-Teacher
1.1. Inconsistency measurement.

Inconsistency pertains to the problem of pseudo boxes
being highly inaccurate and varying greatly at different
stages of training. To address this issue, we measure the de-
gree of variation in pseudo-bboxes across different training
steps. Specifically, we achieve this by saving checkpoints
every 4000 training steps and running inference on a subset
of 5000 images from the unlabeled set using these check-
points. The prediction output from the previous checkpoint
is treated as the Ground Truth (GT), and we evaluate the
Mean Average Precision (mAP) of the current checkpoint
using the previous predictions as the reference. A higher
mAP indicates more consistent pseudo targets. Then the
inconsistency is measured by accumulating 1 − mAP for
these checkpoints to reflect the accumulated effect of noisy
targets.

2. Verification of the Inconsistency in SSOD
Assignment Inconsistency under Noisy Pseudo Labels.
To illustrate that the conventional IoU-based or heuristic la-
bel assignment is problematic in SSOD, we intentionally
inject random noise to the ground-truth bounding boxes
and testify the assignment consistency by quantifying the
assignment IoU (A-IoU) of clean and noisy assignments.
Suppose a bounding box b = (x1, y1, x2, y2) is assigned
to a set of k anchors A = {a1, . . . , ak}. We add Gaus-
sian noise to its coordinate with a noise ratio ρ, so that
b′ = (x1 + ϵx1 × w, y1 + ϵy1 × h, x2 + ϵx2 × w, y2 +
ϵy2
× h), in which w and h are width and height of the

box. ϵx1
, ϵy1

, ϵx2
, ϵy2

are sampled from a normal distribu-
tion N (0, ρ). The perturbed box b′ is matched to a new set
of l anchors A′ = {a′1, . . . , a′l}. The A-IoU is computed
as the intersection-of-union between A and A′. The higher
A-IoU score suggests the assignment is more robust to label
noise.

We evaluated the assignment consistency under two sce-
narios. Firstly, we calculated the assignment Intersection
over Union (IoU) with varying degrees of noise ratio ρ ∈
0.1, 0.2, . . . , 0.5 using the final model. Secondly, we inves-
tigated how assignment consistency changes during training
by reporting the Average-IoU (A-IoU) at different stages
of training, with a constant ρ value of 0.1. We compared

(a) Anchor assignment IOU dynamics along training (b) Anchor assignment IOU with different noise ratio

Figure 9. Assignment IoU score between ground-truth and the
noisy bounding boxes (a) at different times of training and (b) us-
ing different noise ratios.

Table 6. Classification and Regression inconsistency analysis us-
ing IOU-Confidence linear regression (LR) error. We also provide
the Mean Teacher IoU-Confidence plot on the right.

LR Standard Error

Mean Teacher 0.109

Consistent-Teacher 0.080

our ASA with IoU-based assigners [20, 23, 28] and ATSS
assigner [40], using the Mean Teacher RetinaNet baseline
on COCO 10%. To ensure a fair comparison, we kept all
modules identical except for the assignment module. In
both evaluations, we randomly selected 1000 images from
val2017 to compute the A-IoU.

Figure 9 depicts the mean±std A-IoU between clean and
noisy labels at various training times and noise ratios ρ. In
particular, Figure 9(a) illustrates that both ATSS and our
ASA achieve higher A-IoU than the commonly used IoU-
based assignment. It is worth noting, however, that ATSS
still relies on heuristic matching rules between labels and
anchor boxes. In contrast, our ASA steadily improves as
the detector becomes more accurate.

Figure 9(b) illustrates that the IoU-based assignment
method fails to maintain the initial assignment when a large
amount of label noise is introduced. This experiment high-
lights that the IoU-based assignment method is incapable of
maintaining consistent assignments in SSOD due to the in-
herently noisy nature of pseudo-labels. In contrast, our pro-
posed ASA strategy performs well even under severe noise
scenarios. This result supports our argument that our con-
sistent assignment strategy is robust to label noise in SSOD.

Classification and Regression Inconsistency. We un-
veiled the regression and classification inconsistency prob-
lem by identifying the mismatch between the high-score
and high-IoU predictions. We obtain the confidence-IoU
pairs on val2017 using Consistent-Teacher and
Mean Teacher RetinaNet when trained on COCO 10% data,
and analyze the correlation between the two variables. We
apply linear regression and measure the standard error to



reflect the correlation between confidences and IoUs. The
smaller error indicates a higher correlation.

Table 6 presents the linear regression (LR) standard er-
ror for Consistent-Teacher and Mean Teacher Reti-
naNet. The scatter plot on the right displays the confidence-
IoU of Mean-Teacher. We observe a clear misalignment be-
tween classification and regression tasks in semi-supervised
detectors, as numerous low-confidence predictions possess
high IoU scores. This indicates that classification confi-
dence does not provide a strong enough clue for accurate
regression, resulting in erroneous pseudo-label noise dur-
ing training. The high LR error of 0.109 with Mean Teacher
RetinaNet further demonstrates this point. In contrast, our
Consistent-Teacher largely eliminates the mismatch
between the two tasks with a lower LR error of 0.080. This
supports our argument that Consistent-Teacher can
align the classification and regression sub-tasks and reduce
the mismatch in SSOD.

3. Additional Ablation Study

3.1. Anchor-based VS Anchor-Free

In this study, we aim to compare the performance of
anchor-based and anchor-free object detectors on the MS-
COCO 10% SSOD benchmark dataset. To achieve this, we
have selected RetinaNet as a representative anchor-based
detector and FCOS as a representative anchor-free detector.
We then apply the MeanTeacher baseline and our proposed
Consistent-Teacher , to see how different detectors
perform on semi-supervised detection tasks.

Table 9 displays the performance of both detec-
tors, with and without the implementation of our pro-
posed approach. The results demonstrate that our
Consistent-Teacher method substantially enhances
the performance of both anchor-based and anchor-free
baseline detectors. For instance, semi-supervised FCOS
achieves a 35.8 mAP with MeanTeacher but experiences a
4.1 mAP increase when using our method. Additionally,
the plug-and-play characteristic of our approach facilitates
smooth integration with various detectors, underscoring its
adaptability and effectiveness in augmenting object detec-
tion performance across distinct detector architectures.

Table 7. SSOD performance with anchor-based and anchor-free
detectors.

Method mAP
FCOS MeanTeacher 35.8
+Consistent-Teacher 39.9
RetinaNet MeanTeacher 35.5
+Consistent-Teacher 40.0

Table 8. Ablation for the λdist.

λdist 0 0.001 0.002 0.01
mAP Unstable 40.0 39.8 39.4

3.2. Ablation on λdist

In our experiments, λdist is utilized to ensure stable
training. However, in this section, we aim to investi-
gate the impact of λdist on the results. Specifically, we
present the outcomes for various values of λdist, including
0, 0.001, 0.002, 0.01, in Tab. 8. Setting λdist = 0 leads to
highly unstable assignment, which can cause memory over-
flow, particularly during the initial phase of training when
matching is quite inaccurate. On the other hand, when λdist

is significant, the centerness prior cancels out the perfor-
mance advantage of our ASA. It is safe to set λreg in ASA
to the same value as that in the loss term.

3.3. Training Time

Table 9 showcases the results comparing the training
time per iteration for the RetinaNet-MeanTeacher detector
on the MS-COCO SSOD task, employing various enhance-
ments and methods. The impact of each method on the
training time per iteration is evident from the table.

The RetinaNet baseline exhibits a training time of 1.25
s/iter. Intriguingly, ASA not only boosts performance but
also reduces time complexity during the assignment, pri-
marily due to its more efficient implementation and fewer
anchor number requirement.

FAM3D introduces a marginal increase in training time,
suggesting a reasonable balance between performance en-
hancement and computational efficiency. In the case of
GMM-based thresholding, updating the threshold every it-
eration results in an approximate 10% increase in training
time, indicating that GMM may provide certain advantages
but at the cost of extended training durations.

Table 9. Train time per second with different methods.

Method Sec./Iter. ∆
Improved RetinaNet 1.25 -
+ ASA 1.18 -0.07
+ FAM2D 1.22 +0.04
+ FAM3D 1.26 +0.04
+ GMM 1.38 +0.12

4. Detection results visualization

4.1. Qualitative comparison with the baseline.

To further compare our Consistent-Teacher with
the baseline Mean Teacher RetinaNet, we visualize the pre-
dicted bounding boxes on val2017 under the COCO 10%



protocol. In Figure 10, we plot the predicted and ground-
truth bounding boxes in Violet and Orange respectively,
while highlighting the false positive bounding boxes in Red.

There are 3 general properties that we could observe in
our demonstration.

1. Firstly, Consistent-Teacher is better suited
for crowded object localization than Mean Teacher.
Mean Teacher often mistakes the intersection of
two overlapped objects as a new instance, whereas
Consistent-Teacher largely resolves the inac-
curate positioning problem through its adaptive anchor
selection mechanism. For example, in scenes with ze-
bras or sheep, Mean Teacher often gives a false pos-
itive output in the overlapping area of the two ob-
jects, whereas Consistent-Teacher is able to ac-
curately locate the objects.

2. Secondly, under the semi-supervised setting, Mean
Teacher RetinaNet may either predict the wrong class
for the correct location or regress an inaccurate bound-
ing box despite having high classification confidence.
For example, birds are sometimes misidentified as air-
planes even when the localization is accurate. This is
mainly due to the inconsistency between the classifi-
cation and regression tasks, i.e., the features required
for regression may not be optimal for classification.
In contrast, Consistent-Teacher effectively dis-
criminates between similar categories using its FAM-
3D module to dynamically select the most appropriate
features.

3. Thirdly, Consistent-Teacher achieves higher
recall by being capable of detecting small or crowded
instances that Mean Teacher may fail to identify. For
example, Consistent-Teacher is able to detect
most of the hot dogs on a grill, while Mean Teacher
may neglect most of them.

4.2. Good and Failure Cases.

We provide additional examples to showcase the
successful and unsuccessful instances produced by
Consistent-Teacher on COCO val2017, shown
in Figure 11 and Figure 12, respectively. Although our
proposed method has achieved impressive performance
on a variety of SSOD benchmarks, Figure 12 highlights
several deficiencies. Firstly, the trained detector lacks
robustness to some out-of-distribution samples, such as
cartoon characters on street signs being recognized as
real people, and reflections in mirrors being identified as
objects. Secondly, our detection performance is poor for
some classes with small sizes, such as toothbrushes, hair
dryers, etc. Thirdly, Consistent-Teacher also tends

to treat parts of the object as a whole, such as the head of
a giant panda being detected as a separate animal (in the
lower left corner), and the dial of a clock being identified
as the entire clock (on the right of the panda).

5. Experiment and Hyper-parameter settings
5.1. Datasets and Data Preprocessing

5.1.1 MS-COCO 2017

The Microsoft Common Objects in Context (MS-COCO)
is a large-scale dataset used for object detection, segmen-
tation, key-point detection, and captioning. In our SSOD
experiments, we utilize the COCO2017 dataset, which in-
cludes 118K training and 5K validation images, along with
bounding box annotations for 80 object categories.

5.1.2 PASCAL VOC 2007-2012

The PASCAL Visual Object Classes (VOC) dataset contains
20 object categories, along with pixel-level segmentation
annotations, bounding box annotations, and object class an-
notations. We adopt the official VOC 2007 trainval set,
consisting of 5011 images, as the labeled set, and the 11540
images from the VOC 2012 trainval set as the unlabeled
data in this study. Our evaluation is performed on the VOC
2007 test set.

5.1.3 Data Augmentations.

We use the same data augmentations as described in Soft
Teacher [36], including a labeled data augmentation in Ta-
ble 10, a weak unlabeled augmentation in Table 11 and a
strong unlabeled augmentation in Table 12.

5.2. Implementation Details

We implement our Consistent-Teacher approach
based on the MMdetection4 framework, using the data pre-
processing code from the open-sourced Soft-Teacher5 and
Google ssl-detection6. We train our detectors on 8 NVIDIA
Tesla V100 GPUs, and it takes approximately 3 days for
180K training iterations. Each GPU contains 1 labeled im-
age and 4 unlabeled images. The source code is included in
a separate zip file.

4https://github.com/open-mmlab/mmdetection
5https://github.com/microsoft/SoftTeacher
6https://github.com/google-research/ssl detection/



Consistent Teacher Mean Teacher Consistent Teacher Mean Teacher
In

ac
cu

ra
te

 lo
ca

liz
at

io
n 

in
 c

ro
w

d
C

ls
-re

g 
In

co
ns

is
te

nc
y

Lo
w

 re
ca

ll

Figure 10. Qualitative comparison on the COCO%10 evaluation. The bounding boxes in Orange are the ground truths, and Violet refers to
the prediction. Red highlights the false positive predictions.



Figure 11. Good detection results for the COCO%10 evaluation. The bounding boxes in Orange are the ground truths, and Violet refers to
the prediction.

Table 10. Data augmentation for labeled image training.

Transformation Description Parameter Setting

RandomResize Resize the image to the height of h randomly sampled from h ∼ U(hmin, hmax), while
keeping the height-width ratio unchanged.

hmin = 400, hmax =
1200 in MS-COCO
hmin = 480, hmax =
800 in PASCAL-VOC

RandomFlip Randomly horizontally flip an image with a probability of p. p = 0.5
OneOf Select one of the transformations in a transformation set T . T = TransAppearance

Table 11. Weak data augmentation for an unlabeled image.

Transformation Description Parameter Setting

RandomResize Resize the image to the height of h randomly sampled from h ∼ U(hmin, hmax), while
keeping the height-width ratio unchanged.

hmin = 400, hmax =
1200 in MS-COCO
hmin = 480, hmax =
800 in PASCAL-VOC

RandomFlip Randomly horizontally flip an image with a probability of p. p = 0.5



Figure 12. Failure detection results for the COCO%10 evaluation. The bounding boxes in Orange are the ground truths, and Violet refers
to the prediction.

Table 12. Strong data augmentation for an unlabeled image.

Transformation Description Parameter Setting

RandomResize Resize the image to the height of h randomly sampled from h ∼ U(hmin, hmax), while
keeping the height-width ratio unchanged.

hmin = 400, hmax =
1200 in MS-COCO
hmin = 480, hmax =
800 in PASCAL-VOC

RandomFlip Randomly horizontally flip an image with a probability of p. p = 0.5
OneOf Select one of the transformations in a transformation set T . T = TransAppearance
OneOf Select one of the transformation in a transformation set T . T = TransGeo

RandErase Randomly selects K rectangle region of size λh × λw in an image and erases its pixels with
random values, where (h,w) are the height and width of the original image.

K ∈ U(1, 5)
λ ∈ U(0, 0.2)



Table 13. Appearance transformations, called TransAppearance.

Transformation Description Parameter Setting
Identity Returns the original image.
Autocontrast Maximizes the image contrast by setting the darkest (lightest) pixel to black (white).
Equalize Equalizes the image histogram.
RandSolarize Invert all pixels above a threshold value T . T ∈ U(0, 1)
RandColor Adjust the color balance of the image. C = 0 returns a black&white image, C = 1 returns the

original image.
C ∈ U(0.05, 0.95)

RandContrast Adjust the contrast of the image. C = 0 returns a solid grey image, C = 1 returns the original
image.

C ∈ U(0.05, 0.95)

RandBrightness Adjust the brightness of the image. C = 0 returns a black image, C = 1 returns the original
image.

C ∈ U(0.05, 0.95)

RandSharpness Adjust the sharpness of the image. C = 0 returns a blurred image, C = 1 returns the original
image.

C ∈ U(0.05, 0.95)

RandPolarize Reduce each pixel to C bits. C ∈ U(4, 8)

Table 14. Geometric transformations, called TransGeo.

Transformation Description Parameter Setting
RandTranslate X Translate the image horizontally by λ×image width. λ ∈ U(−0.1, 0.1)
RandTranslate Y Translate the image vertically by λ×image height. λ ∈ U(−0.1, 0.1)
RandRotate Y Rotates the image by θ degrees. θ ∈ U(−30◦, 30◦)
RanShear X Shears the image along the horizontal axis with rate R. R ∈ U(−0.480, 0.480)
RanShear Y Shears the image along the vertical axis with rate R. R ∈ U(−0.480, 0.480)
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