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This supplementary material provides the following ad-
ditional information: Section A presents the result of in-
door visual localization using NN search with the mutual
check. Section B provides the result of our method in visual
SLAM. Section C shows the efficiency of different Trans-
former modules for cross-boosting stage. Section D pro-
vides an ablation study of the loss function used to train
our method. As mentioned in Section 5.2 in the paper, Sec-
tion E details how we chose the threshold for Lowe’s ratio
test [8] or distance test used for the visual localization and
3D reconstructions. Section F shows more qualitative ex-
amples of the matching results of our approach (before and
after boosting) on the Aachen Day-Night v1.1 [17] and In-
Loc [13] datasets.

A. Indoor visual localization

InLoc [13]
(0.25m,10◦) / (0.50m,10◦) / (5.0m,10◦) ↑Method

DUC1 DUC2

ORB [11] 21.7 / 30.8 / 36.9 24.4 / 30.5 / 35.9
ORB+Boost-B (Ours) 25.3 / 36.4 / 43.4 23.7 / 29.8 / 37.4

SIFT [8] 23.2 / 35.9 / 46.0 13.0 / 22.1 / 28.2
SOSNet [14] 31.8 / 44.4 / 54.0 23.7 / 39.7 / 48.1
RootSIFT [1] 24.7 / 36.9 / 41.9 17.6 / 27.5 / 33.6
SIFT+Boost-F (Ours) 28.3 / 40.4 / 47.5 19.8 / 29.0 / 35.1
SIFT+Boost-B (Ours) 24.2 / 35.9 / 46.0 18.3 / 29.0 / 35.1

SuperPoint [4] 33.3 / 49.5 / 61.1 33.6 / 51.9 / 61.8
SuperPoint+Boost-F (Ours) 32.3 / 51.0 / 64.1 36.6 / 51.9 / 59.5
SuperPoint+Boost-B (Ours) 33.3 / 49.0 / 60.1 35.1 / 51.9 / 59.5

ALIKE [18] 31.8 / 47.5 / 61.1 26.7 / 41.2 / 49.6
ALIKE+Boost-F (Ours) 33.8 / 53.0 / 68.2 31.3 / 42.0 / 48.1
ALIKE+Boost-B (Ours) 28.8 / 43.9 / 56.6 31.3 / 39.7 / 45.8

Table 1. Visual localization results in indoor scenes (InLoc [13]).
The first and second best result are highlighted. In this test, no
ratio/distance test is used for feature matching.

*Corresponding Author: Danping Zou (dpzou@sjtu.edu.cn)

To further evaluate the performance of our method, we
apply our method for visual localization on the InLoc
dataset [13] using only NN search and a mutual check with-
out using the ratio or distance tests.

As shown in Tab. 1, our method can also enhance the
performance of all descriptors although a different match-
ing strategy is used. The SIFT+Boost-B is better than
both SIFT [8] and RootSIFT [1]. The SuperPoint+Boost-
B shows considerable competitiveness compared with Su-
perPoint [4]. We can also see that our ORB+Boost-B per-
forms worse compared with SuperPoint [4] and ALIKE [18]
without distance tests. In comparison, the results in Section
5.2 in the paper show that our ORB+Boost-B can compete
with SuperPoint and ALIKE when we adopt ratio or dis-
tance tests for matching.

B. Visual SLAM
Our approach of reusing existing descriptors offers a

cost-effective way to enhance the performance of estab-
lished systems like visual SLAM. To demonstrate this, we
integrated our ORB+Boost-B into ORB-SLAM2 [9].

The results of translation error in EuRoC dataset [3]
for ORB-SLAM2 [9] using ORB and ORB+Boost-B are
shown in Tab. 2. By boosting the original ORB [11] to
ORB+Boost-B, ORB-SLAM2 provides more accurate es-
timate. Compared to other state-of-the-art local features,
our method can improve the performance while introduc-
ing minimal additional time consumption (only 3.2ms on a
desktop GPU and 27ms on an embedded GPU to process
2000 ORBs).

C. Transformer modules for cross-boosting
We compared the FeatureBooster using different Trans-

former modules for the cross-boosting stage. Specifically,
we present the results of the vanilla transformer using MHA
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Descriptor used (ORB-SLAM2 [9]) MH01 MH02 MH03 MH04 MH05 V101 V102 V103 V201 V202 V203

ORB [11] 0.0318 0.0215 0.0267 0.1282 0.0549 0.0349 0.0211 0.0486 0.0449 0.0270 0.1716
ORB+Boost-B (Ours) 0.0304 0.0175 0.0252 0.0916 0.0470 0.0343 0.0213 0.0449 0.0379 0.0249 0.2606

Table 2. Comparison of translation RMSE(m) in EuRoC dataset [3] for ORB-SLAM2 [9] using different descriptors. RMSE is the smaller
the better and the better results are highlighted. The result shows that ORB+Boost-B improves the accuracy of ORB-SLAM2.

Descriptor Module used (Cross-boosting) HPatches MMA↑
@3 / @5

RTX 3090 Runtime(ms)↓
#500 / #1000 / #2000 / #4000 / #8000

Jetson NX Runtime(ms)↓
#500 / #1000 / #2000 / #4000 / #8000

Vanilla Transformer [15] 0.437 / 0.500 2.1 / 2.6 / 4.9 / 13.6 / 45.9 13.2 / 31.1 / 90.2 / 310.3 / ×ORB+Boost-B Attention-Free Transformer [16] 0.436 / 0.495 1.6 / 2.0 / 3.2 / 4.3 / 7.8 8.4 / 14.5 / 27.0 / 51.3 / 108.2

Vanilla Transformer [15] 0.679 / 0.777 2.8 / 3.9 / 8.7 / 27.1 / 96.8 23.5 / 60.0 / 185.0 / × / ×SuperPoint+Boost-F Attention-Free Transformer [16] 0.669 / 0.758 1.9 / 2.1 / 3.3 / 5.4 / 10.2 13.2 / 23.5 / 44.1 / 87.3 / 194.2

Table 3. The efficiency of using different Transformer modules. The table shows the mean matching accuracy (MMA) under thresholds 3
and 5 on HPatches dataset and the runtime for boosting different numbers of local features on RTX 3090 and Jetson Xavier NX 8GB. ‘×’
indicates CUDA running out of memory.

Method Standard Rotated Average
@3 @5 @3 @5 @3 @5

SIFT [8]

No boost 0.534 0.586 0.505 0.559 0.519 0.572
No LBOOST 0.571 0.644 0.216 0.236 0.393 0.440
λ = 1 0.577 0.651 0.263 0.287 0.420 0.469
λ = 10 0.573 0.640 0.391 0.428 0.482 0.534

SuperPoint [4]

No boost 0.654 0.738 0.202 0.222 0.428 0.480
No LBOOST 0.663 0.756 0.209 0.232 0.436 0.494
λ = 1 0.670 0.763 0.218 0.242 0.444 0.503
λ = 10 0.669 0.758 0.213 0.235 0.441 0.497

Table 4. Ablation study on the LBOOST . The table shows the
mean matching accuracy (MMA) under thresholds 3 and 5 on the
standard HPatches dataset, the rotated HPatches dataset, and the
average performance using both datasets. We highlight the first
and second best MMA values. The result shows the LBOOST

can help the boosted descriptors retain the performance of orig-
inal descriptors in the cases where the training set does not in-
clude. Hence LBOOST can improve the generalization ability of
the trained model.

[15] and the attention-free transformer using AFT [16] in
Tab. 3. The results show that the Attention-Free Trans-
former is much faster and consumes less GPU memory than
the vanilla one, with a minor drop in matching performance.

D. Ablation study of the training loss

In this section, we study the impact of the training loss on
our FeatureBooster. Our training loss consists of two term:
LAP and LBOOST , which are balanced using a weight λ.
We use the HPatches [2] for the ablation study following the
way in Section 5.1. To further evaluate the importance of
LBOOST , we additionally use the rotated HPatches dataset
[10] by applying random in-plane rotation of images from
0◦ to 360◦, while our training set MegaDepth [7] does not
contain large in-plane rotation cases.

Tab. 4 shows MMA (Mean Matching Accuracy) results
under re-projection error thresholds of 3 and 5 pixels for

three settings: standard, rotated, and average, which means
using the standard HPatches dataset, the rotated HPatches
dataset, and the average performance of using both datasets
respectively. We can see that the original SIFT [8] achieves
the best result under the rotated HPatches in the rotated and
average settings. We believe the reason is that the training
set (MegaDepth [7]) does not contain large-in-plane rota-
tion cases. However, our LBOOST can help the boosted
SIFT retain the performance of SIFT on rotated HPatches
when λ increases.

We also can see that the boosted SIFT and SuperPoint
[4] can achieve better performance on Standard HPatches
when λ = 1, but we set λ = 10 in the paper for a greater
generalization of our method.

E. Threshold for ratio/distance test
It is known that using ratio or distance tests can reject

many incorrect correspondences and improve the RANSAC
[6] efficiency and the final matching results. The ratio test
is to check if the ratio of the descriptor distance of the clos-
est feature to that of the second closest one is smaller than
a threshold. Distance tests simply check if the distance be-
tween two matched descriptors is within a threshold.

To find a suitable ratio/distance threshold for a fair com-
parison in the experiments, we compute the probability den-
sity functions (PDFs) of correct and incorrect matches fol-
lowing [8] and select thresholds for all descriptors accord-
ing to the threshold criteria of their corresponding baselines.
We use HPatches dataset [2] to compute the PDFs like D2-
Net [5]. The PDFs are shown in Fig. 1.

We use ratio tests for matching DoG-based descriptors
(e.g. RootSIFT [1], SOSNet [14] and our boosted SIFTs)
like SIFT [8]. Specifically, we adopt Lowe’s recommended
threshold of 0.8 [8] for SIFT, RootSIFT and SIFT+Boost-B,
while for SOSNet and SIFT+Boost-F we use a ratio thresh-
old of 0.85.



We use distance tests instead of ratio tests for matching
ORB [11] and ORB+Boosted-B descriptors since ratio tests
do not work well for those descriptors. The selected dis-
tance thresholds are 45 and 50 respectively.

We use distance tests for matching SuperPoint [4] de-
scriptors and use the same distance threshold of 0.7 as for
HLoc [12]. We select 0.8 and 55 as the distance thresholds
for matching SuperPoint+Boost-F and SuperPoint+Boost-B
descriptors respectively.

Regarding the ALIKE-based descriptor, the distinctions
between correct and incorrect matches in the PDF curves
are unclear. We heuristically use a ratio threshold of
0.9 for both ALIKE [18] and our ALIKE+Boost-F, and a
threshold of 0.88 for our ALIKE+Boost-B, which can re-
tain 77.3%/77.6%/77.4% correct matches while filtering out
94.4%/94.6%/91.3% incorrect matches.

F. Qualitative examples
Fig. 2 and Fig. 3 show some matching results using dif-

ferent descriptors on Aachen Day-Night v1.1 [17] and In-
Loc [13].
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(d) SIFT+Boost-F
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(e) SIFT+Boost-B
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(h) SuperPoint
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(i) SuperPoint+Boost-F
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(j) SuperPoint+Boost-B
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(k) ALIKE
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(l) ALIKE+Boost-F
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(m) ALIKE+Boost-B

Figure 1. Ratio or distance PDFs for different descriptors. We compute the PDFs for all the descriptors using HPatches dataset [2]. For
correct matches, the distance between the warp points and the keypoints is below 4 pixels. For incorrect matches, the distance is greater
than 10 pixels.
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Figure 2. Matching results of using different descriptors on Aachen Day-Night v1.1 [17]. By boosting the original descriptors, our methods
(represented by ’xxx+Boost-x’) can produce more correct matches under significant changes in viewpoint and illumination. More results
on InLoc [13] are shown in Fig. 3.
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Figure 3. Matching results on InLoc dataset [13]. Our methods can boost the performance of descriptors under significant changes in
viewpoint and texture-less areas. We also can see the failure case, where SIFT even performs worse than ORB and SIFT+Boost-F cannot
improve the performance in those indoor scenes.
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