Supplementary Material of "Glocal Energy-based Learning for Few-Shot Open-Set Recognition"

Haoyu Wang^{1*} Guansong Pang^{2*} Peng Wang^{3*} Lei Zhang¹ Wei Wei¹ Yanning Zhang^{1†} ¹Northwestern Polytechnical University

²Singapore Management University

³University of Wollonong

1. Dataset Details

MiniImageNet [10] is designed to build a lightweight but challenging dataset. It consists of 600 RGB images per class from 100 different classes from ILSVRC-12 [9]. And the classes are randomly sampled from ImageNet, which has 1000 classes. As in previous work [2–4, 6], we adopt the same split of Ravi & Larochelle [7], who resized all images to 84×84 and use 64 classes for training, 16 for validation and 20 for testing.

TieredImageNet [8] is also a subset of ILSVRC-12. Different from miniImageNet, tieredImageNet is not randomly sampled. It extracts 34 categories form ILSVRC-12, each of which contains $10 \sim 30$ different classes, with a total of 608 classes. Each classes has a varying number of images, with a total of 779,165 images. Unlike mini-ImageNet, tieredImageNet considers ImageNet's category hierarchy. The data is divided according to categories, in which 20 categories (351 classes, 448,695 images) are used as training sets, 6 categories (97 classes, 124,261 images) are used as validation sets, and 8 categories (160 classes, 206,209 images) are used as test sets. We use the same split as [8] and resized all images to 84×84 as the same as previous work [2–4].

CIFAR-FS [1] (CIFAR100 few shots) is randomly sampled from CIFAR100 [5] by using the same criteria with miniImageNet. We use the same split as [1]. But it is much more lightweight. It also consists of 600 RGB images per class from 100 different classes and use 64 classes for training, 16 for validation and 20 for testing. But the resolution of the image is only 32×32 .

2. Method Details

In order to illustrate our proposed method more clearly, as shown in Algorithms 1 and 2, we give the PyTorch like pseudo code of our proposed pixel-wise similarity module and energy-based module, respectively.

Algorithm 1: Pixel-wise similarity. PV forci	n-like	vTorch	Pv'	ritv.	simila	-wise	Pixel-	1:	orithm	Al
--	--------	--------	-----	-------	--------	-------	--------	----	--------	----

f_query: Tensor [2NQ, 1, m^2 , dim/2, 1]
is the feature map of all query samples
f_proto: Tensor [1, N, 1, dim/2, m^2]
is the feature map of all classes
N: N-way
Q: Q-query
m: spatial dimension of feature map
dim: channel dimension of feature map
top_k: the hyperparameter used to select topk
temp: temperature coefficient hyperparameter
class PixelSimilarity(Module):
<pre>definit(args):</pre>
$self.top_k = args.top_k$
self.temperature = args.temp
<pre>self.cos = nn.CosineSimilarity(dim=3)</pre>
def forward(f_query, f_proto):
cosine similarity
sim = self.cos(f_query, f_proto)
topk
sim = sim.topk(self.topk, dim=3).values
sim = sim.sum(dim=[2, 3])
sim = sim / self.temperature
return sim

3. Experiments Details

3.1. Detailed Task Sampling

For a N-way K-shot Q-query FSOR task, its sampling is independent of the dataset and training or testing stage. Specifically, it will randomly select 2N classes from the dataset, half of which will be regarded as known classes and the other half as unknown classes. Q samples will be sampled for each classes as query, while additional K samples will be sampled for known classes as support.

^{*}H. Wang, G. Pang and P. Wang contributed equally in this work. [†]Corresponding author.

Algorithm 2:	Energy-based	Module, Py	Torch like
--------------	--------------	------------	------------

- # e_sim: Tensor [2NQ, N] is class-wise similarity
- # f_sim: Tensor [2NQ, N] is pixel-wise similarity # N: N-way

```
# Q: Q-query
```

- # m_k: margin for closed-set samples
- # m_u: margin for open-set samples
- class EnergyLoss(Module):

def __init__(args):

self.m_k = args.m_k self.m_u = args.m_u

def forward(e_sim, f_sim):
energy score
e_egy = -torch.logsumexp(e_sim, dim=1)
f_egy = -torch.logsumexp(f_sim, dim=1)
energy = e_egy + f_egy

energy loss

k_egy, u_egy = torch.split(energy, NQ) l_k = pow(F.relu(k_egy - self.m_k), 2) l_u = pow(F.relu(self.m_u - u_egy), 2) l_energy = l_k.mean() + l_u.mean() return l_energy

3.2. Detailed Ablation Study

We provide the detailed ablation results on miniImageNet, tieredImageNet and CIFAR-FS under 5-way 1-shot and 5-shot setting.

As show in Table 1, we give the ablation study results of three modules proposed by us on all benchmarks. On miniImageNet and tirerdImageNet dataset, our three modules can improve the performance of open-set recognition while maintaining the closed-set classification performance. On the CIFAR-FS dataset, our pixel-wise similarity branch may not work due to the decrease in original image resolution. The spatial dimension of the feature map is only 2×2 , the pixel-wise similarity branch is difficult to get discriminative local information. But using only the energy loss, our open-set recognition performance can significantly exceed the baseline.

We also give the results of glocal energy score combination of the class-wise branch and pixel-wise on all benchmarks. It can be seen in Table 2 that *Ahead Combine* can always improve open-set recognition performance compared to *Delay Combine*.

For the ablation study of combination coefficients between class-wise energy and pixel-wise energy, we give detailed results in Table 3. Compared to *Learnable* and *Taskadaptive*, *Fixed value* achieves better open-set recognition performance on all benchmarks.

References

- Luca Bertinetto, Joao F Henriques, Philip HS Torr, and Andrea Vedaldi. Meta-learning with differentiable closed-form solvers. *arXiv preprint arXiv:1805.08136*, 2018.
- [2] Shule Deng, Jin-Gang Yu, Zihao Wu, Hongxia Gao, Yansheng Li, and Yang Yang. Learning relative feature displacement for few-shot open-set recognition. *IEEE Transactions* on Multimedia, 2022. 1
- [3] Shiyuan Huang, Jiawei Ma, Guangxing Han, and Shih-Fu Chang. Task-adaptive negative envision for few-shot openset recognition. In *Proceedings of the IEEE/CVF Conference* on Computer Vision and Pattern Recognition, pages 7171– 7180, 2022. 1
- [4] Minki Jeong, Seokeon Choi, and Changick Kim. Few-shot open-set recognition by transformation consistency. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 12566–12575, 2021. 1
- [5] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10 (canadian institute for advanced research). *URL http://www. cs. toronto. edu/kriz/cifar. html*, 5(4):1, 2010. 1
- [6] Bo Liu, Hao Kang, Haoxiang Li, Gang Hua, and Nuno Vasconcelos. Few-shot open-set recognition using metalearning. In *Proceedings of the IEEE/CVF Conference* on Computer Vision and Pattern Recognition, pages 8798– 8807, 2020. 1
- [7] Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot learning. 2016. 1
- [8] Mengye Ren, Eleni Triantafillou, Sachin Ravi, Jake Snell, Kevin Swersky, Joshua B Tenenbaum, Hugo Larochelle, and Richard S Zemel. Meta-learning for semi-supervised fewshot classification. arXiv preprint arXiv:1803.00676, 2018.
- [9] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual recognition challenge. *International journal of computer vision*, 115(3):211–252, 2015. 1
- [10] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. Matching networks for one shot learning. Advances in neural information processing systems, 29, 2016.

Benchmark	Method	ACC↑	AUROC↑	F1 Score↑	FPR95↓	AUPR ↑
	Baseline	68.53 ± 0.78	69.85 ± 0.87	65.06 ± 0.69	79.35 ± 1.45	70.53 ± 0.83
miniImageNet	+ Energy Loss	68.14 ± 0.78	71.97 ± 0.83	65.92 ± 0.69	77.88 ± 1.34	71.96 ± 0.83
5-way 1-shot	+ Pixel wise	68.40 ± 0.86	72.49 ± 0.76	67.38 ± 0.69	74.99 ± 1.35	73.28 ± 0.85
	+ Combine score	68.26 ± 0.85	73.70 ± 0.82	67.72 ± 0.70	74.10 ± 1.38	73.80 ± 0.87
	Baseline	83.66 ± 0.55	77.46 ± 0.78	71.36 ± 0.68	70.95 ± 1.35	78.63 ± 0.69
miniImageNet	+ Energy Loss	82.88 ± 0.55	79.25 ± 0.69	72.24 ± 0.63	69.02 ± 1.54	79.97 ± 0.70
5-way 5-shot	+ Pixel wise	83.57 ± 0.53	80.47 ± 0.66	73.32 ± 0.61	66.18 ± 1.50	80.98 ± 0.66
	+ Combine score	83.05 ± 0.55	82.29 ± 0.60	74.75 ± 0.56	61.52 ± 1.44	82.40 ± 0.63
	Baseline	70.55 ± 0.93	71.66 ± 0.82	67.02 ± 0.63	74.66 ± 1.40	71.01 ± 0.83
tieredImageNet	+ Energy Loss	70.60 ± 0.94	73.57 ± 0.84	67.90 ± 0.61	72.60 ± 1.46	73.48 ± 0.86
5-way 1-shot	+ Pixel wise	70.39 ± 0.96	74.06 ± 0.73	67.90 ± 0.61	71.72 ± 1.32	73.10 ± 0.75
	+ Combine score	70.50 ± 0.93	75.86 ± 0.81	69.44 ± 0.68	70.22 ± 1.47	75.78 ± 0.80
	Baseline	85.38 ± 0.66	76.32 ± 0.71	70.42 ± 0.62	68.91 ± 1.60	76.82 ± 0.70
tieredImageNet	+ Energy Loss	84.24 ± 0.69	79.54 ± 0.67	72.38 ± 0.61	66.40 ± 1.55	79.86 ± 0.66
5-way 5-shot	+ Pixel wise	85.06 ± 0.66	80.22 ± 0.72	73.08 ± 0.61	63.29 ± 1.63	80.14 ± 0.74
	+ Combine score	84.60 ± 0.65	81.95 ± 0.72	74.39 ± 0.63	59.77 ± 1.56	82.17 ± 0.68
	Baseline	76.85 ± 0.88	78.51 ± 0.75	71.70 ± 0.72	67.02 ± 1.72	79.11 ± 0.80
CIFAR-FS	+ Energy Loss	76.67 ± 0.90	79.43 ± 0.72	72.44 ± 0.63	65.59 ± 1.72	79.70 ± 0.74
5-way 1-shot	+ Pixel wise	76.60 ± 0.87	78.33 ± 0.81	71.65 ± 0.71	67.12 ± 1.72	78.73 ± 0.80
	+ Combine score	76.77 ± 0.88	78.67 ± 0.80	71.77 ± 0.72	66.93 ± 1.72	79.51 ± 0.81
	Baseline	87.98 ± 0.61	84.93 ± 0.64	77.12 ± 0.59	57.04 ± 1.95	84.95 ± 0.56
CIFAR-FS	+ Energy Loss	87.63 ± 0.62	86.84 ± 0.58	79.51 ± 0.58	54.47 ± 1.98	87.81 ± 0.52
5-way 5-shot	+ Pixel wise	86.94 ± 0.65	85.55 ± 0.59	78.10 ± 0.59	55.68 ± 1.93	86.17 ± 0.56
	+ Combine score	86.74 ± 0.66	86.56 ± 0.59	79.15 ± 0.59	55.33 ± 2.03	87.71 ± 0.52

Table 1. Ablation study of three modules proposed in GEL. We report the 5-way 1-shot and 5-shot results on miniImageNet, tieredImageNet and CIFAR-FS to demonstrate the effectiveness of our modules.

		5-way	1-shot	5-way 5-shot		
Dataset	Method	ACC	AUROC	ACC	AUROC	
miniImageNet	Delay Combine Ahead Combine	$\begin{array}{c} 68.39 \pm 0.86 \\ 68.26 \pm 0.85 \end{array}$	$73.17 \pm 0.83 \\73.70 \pm 0.82$	$\begin{array}{c} 83.00 \pm 0.55 \\ 83.05 \pm 0.55 \end{array}$	80.67 ± 0.65 82.29 ± 0.60	
tieredImageNet	Delay Combine Ahead Combine	$\begin{array}{c} 70.72 \pm 0.99 \\ 70.50 \pm 0.93 \end{array}$	$\begin{array}{c} 74.00 \pm 0.79 \\ 75.86 \pm 0.81 \end{array}$	84.44 ± 0.66 84.60 ± 0.65	$\begin{array}{c} 80.57 \pm 0.69 \\ 81.95 \pm 0.72 \end{array}$	
CIFAR-FS	Delay Combine Ahead Combine	76.58 ± 0.86 76.77 ± 0.88	$78.29 \pm 0.76 \\ 78.67 \pm 0.80$	87.75 ± 0.64 86.74 ± 0.66	$\begin{array}{c} 86.01 \pm 0.63 \\ 86.56 \pm 0.59 \end{array}$	

Table 2. Ablation study of glocal energy score combination of the class-wise branch and pixel-wise branch on miniImageNet, tieredImageNet and CIFAR-FS under 5-way 1-shot and 5-shot setting.

		5-way	1-shot	5-way 5-shot		
Dataset Method		ACC	AUROC	ACC	AUROC	
	Fixed value	68.26 ± 0.85	73.70 ± 0.82	83.05 ± 0.55	82.29 ± 0.60	
miniImageNet	Learnable	68.34 ± 0.85	73.40 ± 0.82	83.08 ± 0.56	81.37 ± 0.64	
	Task-adaptive	68.34 ± 0.85	73.71 ± 0.72	83.00 ± 0.56	81.34 ± 0.62	
tieredImageNet	Fixed value	70.50 ± 0.93	75.86 ± 0.81	84.60 ± 0.65	81.95 ± 0.72	
	Learnable	70.99 ± 0.93	75.59 ± 0.80	84.84 ± 0.65	80.86 ± 0.70	
	Task-adaptive	70.68 ± 0.92	74.93 ± 0.83	84.79 ± 0.66	80.49 ± 0.72	
CIFAR-FS	Fixed value	76.77 ± 0.88	78.67 ± 0.80	86.74 ± 0.66	86.56 ± 0.59	
	Learnable	76.60 ± 0.87	78.62 ± 0.80	86.94 ± 0.65	87.29 ± 0.57	
	Task-adaptive	76.70 ± 0.87	77.99 ± 0.78	87.33 ± 0.60	85.67 ± 0.60	

Table 3. Ablation study of combination coefficients between class-wise energy and pixel-wise energy on miniImageNet, tieredImageNet and CIFAR-FS under 5-way 1-shot and 5-shot setting.

Deterat	Method	5-way	1-shot	5-way 5-shot		
Dataset		ACC	AUROC	ACC	AUROC	
MiniImageNet MiniImageNet	RFDNet Ours	66.40 ± 0.82 67.40 \pm 0.84	$71.91 \pm 0.78 \\ \textbf{72.35} \pm \textbf{0.80}$	81.91 ± 0.60 82.32 ± 0.56	81.29 ± 0.56 80.89 ± 0.65	
TieredImageNet TieredImageNet	RFDNet Ours	$70.33 \pm 0.90 \\ \textbf{70.45} \pm \textbf{0.92}$	$75.12 \pm 0.74 \\ \textbf{75.69} \pm \textbf{0.83}$	84.88 ± 0.62 84.21 ± 0.67	82.19 ± 0.66 81.47 ± 0.76	
CIFAR-FS CIFAR-FS	RFDNet Ours	71.34 ± 0.90 73.36 \pm 0.89	$76.74 \pm 0.75 \\ \textbf{77.69} \pm \textbf{0.82}$	$84.61 \pm 0.62 \\ \textbf{85.46} \pm \textbf{0.63}$	85.17 ± 0.57 85.68 ± 0.64	

Table 4. Results of our method with ResNet-18 backbone. We reimplement our method using ResNet-18 as RFDNet, and report their comparison in the table. Our method still outperforms RFDNet in most cases.

Figure 1. Four additional examples.