
Supplementary Material for “Improving Generalization of Meta-learning with
Inverted Regularization at Inner-level”

Due to the space limitation of the main paper, we provide supplementary theoretical proof and supplementary experimental
results in this Appendix, including: more detailed theoretical analyses, more experiment details, an additional experiment
on Mini-ImageNet few-shot classification with limited tasks, an additional experiment on Meta-dataset with the first-order
method and larger backbone, and an additional experiment on meta-reweighting with Minimax-Meta Regularization for
robust learning.

A. Theoretical Analysis
In this section, we provide detailed proof derivations of the theoretical results in the main paper.

A.1. Lemmas

This section lists the Lemmas that help prove our main results.

Lemma 1. (from [6]) Let ϕ be a λ-strongly convex and η-smooth function. Then, for any β ≤ 2
λ+η , we have

∥(u− β∇ϕ(u))− (v − β∇ϕ(v))∥ ≤
(
1− βλη

λ+ η

)
∥u− v∥

for any u and v.

Lemma 2. (based on [5]) Let f : Rd → R be an function that is L-smooth, µ-strongly convex, and has gradient bounded by
G. Consider a function U(·) that describes the MAML inner-level update rule, with L2-Norm regularization parameterized
by δ

2 : U(w) = w − α∇w(f(w) +
δ
2∥w∥

2)), with α ≤ 1
2L , δ < 1

2α . Then,

∥U(w)−U(v)∥ ≤ (1− αδ − αµ)∥w − v∥ ∀w,v ∈ Rd

Proof. Firstly, note that
U(w) = w − α(∇f(w) + δw) = (1− αδ)w − α∇f(w)

The Jacobian of U(·) is given by ∇U(w) = (1− αδ)I − α∇2f(w).
Like in [5], we use A ⪰ 0 to denote the positive semi-definite nature of the matrix. Similarly, A ⪰ B means that θT (A −
B)θ ≥ 0∀θ. Since f is µ-strongly convex, and L-smooth, we could have µI ⪯ ∇2f(w) ⪯ LI ∀w ∈ Rd. Then the
Jacobian can be bounded by

(1− αδ − αL)I ⪯ ∇U(w) ⪯ (1− αδ − αµ)I ∀w ∈ Rd

The upper bound implies ∥∇U(w)∥ ≤ (1− αµ− αδ) ∀w ∈ Rd.
Let ψ(t) = v + t(w − v), t ∈ [0, 1] be the line function connecting w and v. Taking the line integral, we have

U(w)−U(v) =

∫ t=1

t=0

∇U(ψ(t))dψ(t)

=

∫ t=1

t=0

∇U(ψ(t))
dψ(t)

dt
dt

=

∫ t=1

t=0

∇U(ψ(t))(w − v)dt

=

(∫ t=1

t=0

∇U(ψ(t))dt

)
(w − v)
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Using the Cauchy-Schwartz inequality and ∥∇U(w)∥ ≤ (1− αµ− αδ) ∀w, we have

∥U(w)−U(v)∥ =
∥∥∥∥∫ t=1

t=0

∇U(ψ(t))(w − v)dt
∥∥∥∥

≤
∫ t=1

t=0

∥∇U(ψ(t))(w − v)∥dt

≤
∫ t=1

t=0

∥∇U(ψ(t))∥∥(w − v)∥dt

≤
∫ t=1

t=0

(1− αµ− αδ)∥w − v∥dt

= (1− αµ− αδ)∥w − v∥
∫ t=1

t=0

dt

= (1− αµ− αδ)∥w − v∥

A.2. Main Results

We start by restating the assumptions we use to derive the results, and then we move on to prove our main results.

Assumption 1. We assume the function ℓ(·, z) satisfies the following properties for any z ∈ Z:
1. (Strong convexity) ℓ(·, z) is µ-strongly convex, i.e., (∇ℓ(w, z)−∇ℓ(u, z))T (w − u) ≥ µ∥w − u∥2;
2. (Lipschitz in function value) ℓ(·, z) has gradients with norm bounded by G, i.e., ∥∇ℓ(w, z)∥ ≤ G;
3. (Lipschitz gradient) ℓ(·, z) is L-smooth, i.e., ∥∇ℓ(w, z)−∇ℓ(u, z)∥ ≤ L∥w − u∥;
4. (Lipschitz Hessian) ℓ(·, z) has ρ-Lipschitz Hessian, i.e.,

∥∥∇2ℓ(w, z)−∇2ℓ(u, z)
∥∥ ≤ ρ∥w − u∥

Assumption 2. We assume FZ is the Borel σ-algebra over Z and Z is a Polish space. And each pi is a non-atomic
distribution over (Z,FZ).

A.2.1 Strongly Convexity and Smoothness

Lemma 3. (based on [5]) Suppose f and f̂ : Rd → R satisfy assumptions 1. We formulate the MAML’s outer-level
evaluation function with inner-level L2-Norm regularization parameterized by δ

2 with f and f̂ , and let f̃ be the function
evaluated after a one-step gradient update procedure, i.e.,

f̃(w) := f(w − α∇w(f̂(w) +
δ

2
∥w∥2))

then, with α < 1
2L , δ < 1

2α and αρG
µ < ( 12 − αL)

2, f̃(·) is (−αρG+ (1− αδ − αL)2µ) strongly convex and (αρG+ (1−
αδ − αµ)2L) smooth.

Proof. Let w,v ∈ Rd be two arbitrary points. Let U(w) = w − α∇w(f̂(w) +
δ
2∥w∥

2)). Note that

U(w) = w − α(∇f̂(w) + δw)

= (1− αδ)w − α∇f̂(w)

We use shorthand of w̃ ≡ U(w), ṽ ≡ U(v). Using the chain rule we could have

∇f̃(w)−∇f̃(v) = ∇U(w)∇f(w̃)−∇U(v)∇f(ṽ)
= (∇U(w)−∇U(v))∇f(w̃) +∇U(v)(∇f(w̃)−∇f(ṽ))

We first move towards the smoothness property. Taking the norm on both sides, based on triangle inequality, we have:

∥∇f̃(w)−∇f̃(v)∥ = ∥(∇U(w)−∇U(v))∇f(w̃) +∇U(v)(∇f(w̃)−∇f(ṽ))∥
≤ ∥(∇U(w)−∇U(v))∇f(w̃)∥+ ∥∇U(v)(∇f(w̃)−∇f(ṽ))∥

(7)
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We could bound the first term on the RHS by

∥(∇U(w)−∇U(v))∇f(w̃)∥
(a)

≤ ∥∇U(w)−∇U(v)∥∥∇f(w̃)∥

=
∥∥∥((1− αδ)I − α∇2f̂(w)

)
−
(
(1− αδ)I − α∇2f̂(v)

)∥∥∥ ∥∇f(w̃)∥

= α
∥∥∥∇2f̂(w)−∇2f̂(v)

∥∥∥ ∥∇f(w̃)∥
(b)

≤ αρ∥w − v∥∥∇f(w̃)∥
(c)

≤ αρG∥w − v∥

(8)

where (a) is due to Cauchy-Schwarz inequality, (b) is due to the Hessian Lipschitz property, and (c) is due to bounded gradient
assumption. Similarly, we could bound the second term on (7)’s RHS by

∥∇U(v)(∇f(w̃)−∇f(ṽ))∥ =
∥∥∥((1− αδ)I − α∇2f̂(v)

)
(∇f(w̃)−∇f(ṽ))

∥∥∥
(a)

≤ (1− αδ − αµ)∥∇f(w̃)−∇f(ṽ)∥
(b)

≤ (1− αδ − αµ)L∥w̃ − ṽ∥
(c)
= (1− αδ − αµ)L∥U(w)−U(v)∥
(d)

≤ (1− αδ − αµ)L(1− αδ − αµ)∥w − v∥
= (1− αδ − αµ)2L∥w − v∥

(9)

Here, (a) is due to (1 − αδ)I − α∇2f̂(v) being symmetric, semi-positive definite, and λmax

(
(1− αδ)I − α∇2f̂(v)

)
≤

(1− αδ)− αµ (see Lemma 2). Step (b) is due to f(·) is L-smooth. Step (c) is the use of short hand w̃ ≡ U(w), ṽ ≡ U(v).
Finally, step (d) is achieved by using Lemma 2 on U(·). Put the result of (8) and (9) into (7), we have

∥∇f̃(w)−∇f̃(v)∥ ≤ ∥(∇U(w)−∇U(v))∇f(w̃)∥+ ∥∇U(v)(∇f(w̃)−∇f(ṽ))∥
≤ αρG∥w − v∥+ (1− αδ − αµ)2L∥w − v∥
=
(
αρG+ (1− αδ − αµ)2L

)
∥w − v∥

and thus f̃(·) is αρG+ (1− αδ − αµ)2L smooth.
Similarly, we first use triangle inequality to find the lower bound.

∥∇f̃(w)−∇f̃(v)∥ = ∥(∇U(w)−∇U(v))∇f(w̃) +∇U(v)(∇f(w̃)−∇f(ṽ))∥
≥ ∥∇U(v)(∇f(w̃)−∇f(ṽ))∥ − ∥(∇U(w)−∇U(v))∇f(w̃)∥

The second term on RHS has already been derived in (8). For the first term, we could bound it by

∥∇U(v)(∇f(w̃)−∇f(ṽ))∥ =
∥∥∥((1− αδ)I − α∇2f̂(v)

)
(∇f(w̃)−∇f(ṽ))

∥∥∥
(a)

≥ (1− αδ − αL)∥∇f(w̃)−∇f(ṽ)∥
(b)

≥ (1− αδ − αL)µ∥w̃ − ṽ∥

= (1− αδ − αL)µ∥(1− αδ)w − α∇f̂(w)− (1− αδ)v + α∇f̂(v)∥

≥ µ(1− αδ − αL)((1− αδ)∥w − v∥ − α∥∇f̂(w)−∇f̂(v)∥)
(c)

≥ µ(1− αδ − αL)((1− αδ)∥w − v∥ − αL∥w − v∥)
≥ µ(1− αδ − αL)2∥w − v∥
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Here (a) is due to λmin

(
I − αδ − α∇2f̂(v)

)
≥ 1 − αδ − αL, (b) is due to f(·) being µ-strongly convex, and (c) is due to

f̂(·) being L-smooth. Put the results together, we have that

∥∇f̃(w)−∇f̃(v)∥ ≥ ∥∇U(v)(∇f(w̃)−∇f(ṽ))∥ − ∥(∇U(w)−∇U(v))∇f(w̃)∥
≥
(
µ(1− αδ − αL)2 − αρG

)
∥w − v∥

Thus the function f̃(·) is µ(1 − αδ − αL)2 − αρG strongly convex. µ(1 − αδ − αL)2 − αρG is positive since αρG
µ <

( 12 − αL)
2.

A.2.2 Generalization Bound

Algorithm 2 MAML [4] (the Original Algorithm without Regularization)

Require: Datasets S =
{
S in
i ,Sout

i

}m
i=1

; few-shot meta-query batch size K ; the number of training tasks sampled at each
round r; the total number of iterations T .

1: Initialize the model parameters w0.
2: for t = 0 to T − 1 do
3: Randomly sample r tasks from the set of m available tasks with indices stored in Bt.
4: for each sampled task Ti do
5: Sample a size K support data batch Dt, in

i from S in
i ;

6: Sample a size b query data batch Dt, out
i from Sout

i ;

7: Calculate wt+1
i := wt − βt∇wtL̂

(
wt − α∇L̂

(
wt,Dt, in

i

)
,Dt, out

i

)
;

8: end for
9: Meta-update wt+1 := 1

r

∑
i∈Bt

wt+1
i

10: end for
11: Return: wT

This section provides the derivation of the generalization bound of MAML with inner-level L2-Norm regularization. The
proofs are based on the derivation framework based on algorithm stability proposed by [3]. The framework’s preliminary is
consistent with this work and shares the same assumptions as this work. To include the notations used in this section, we
provide a restatement of the unregularized MAML steps in Algorithm 2.

We restate some notations for a clearer explanation. In the following of this appendix, we use the hat superscript to
distinguish empirical losses from population losses. And we use the tilde superscript to denote the functions, algorithms, or
processes involving the inner-level regularization, e.g.,

ˆ̃Fi (w,Si) : =
1(
n
K

) ∑
Din

i
⊂Sin

i

|Din
i |=K

L̂
(
w − α∇wL̂(

(
w,Din

i

)
+
δ

2
∥w∥2),Sout

i

)

=
1(
n
K

) ∑
Din

i
⊂Sin

i

|Din
i |=K

1

n

∑
z∈Sout

i

ℓ

w − α

K

∑
z′∈Din

i

∇w

(
ℓ (w, z′) +

δ

2
∥w∥2

)
, z


Similarly, F̃ (·) and F̃i(·,Si) are corresponding to functions with inner-level regularization, distinguished from F (·) and

Fi(·,Si) corresponding to unregularized MAML. Ã also refers to the algorithm (MAML) with inner-level regularization,
with output Ã(S).

Our goal is to bound
EÃ,S [F (Ã(S))− F̂ (Ã(S),S)] (10)

Which is the expected discrepancy between population loss and empirical loss. Note that the loss is evaluated using the
original MAML’s unregularized inner-updating rule at the test time, while the model Ã(S) is generated by MAML with
inner-level regularization.
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Then, we are going to bound (10) using the algorithm-stability-based framework proposed by [3]. We first include defini-
tions and the key lemma of the framework.

Definition 1. (symmetric algorithm)We define an algorithmA : Zn → Rd to be symmetric if its output distribution, denoted
by A(S), remains unchanged under any permutation of the input set S ⊂ Zn. In other words, if we take another set S ′ that
is a permutation of S , the distributions of A(S) and A(S ′) would be similar.

Definition 2. ((γ,K)-uniformly stability, from [3]) Consider the problem in (2) of the main paper, and letA be a randomized
algorithm that produces outputwS given dataset S . We say thatA is (γ,K)-uniformly stable if the following condition holds:
for any i ∈ {1, . . .m}, let S̄ be a dataset that is identical to S except that S̄ in

i and S̄out
i differ from S in

i and Sout
i , respectively,

in at most K and one data points. For any z̄ ∈ Z and any set of K distinct points {z1, . . . , zK} in Z ,

EA

[∣∣∣ℓ(wS − α∇L̂
(
wS , {zj}Kj=1

)
, z̄
)
− ℓ

(
wS̄ − α∇L̂

(
wS̄ , {zj}

K
j=1

)
, z̄
)∣∣∣] ≤ γ

the expectation is with respect to the randomness of A.

Lemma 4. (stability and generalization error, from [3]) Let F and F̂ be the population and empirical losses defined in
Equations (1) and (2) of the main paper, respectively. Suppose Assumption 2 holds and let A be a (possibly randomized)
symmetric and (γ,K)-uniformly stable algorithm that produces output wS ∈ W given input dataset S. Then, the expected

difference between the population loss and the empirical loss of wS is bounded by γ, i.e., EA,S

[
F (wS)− F̂ (wS ,S)

]
≤ γ.

Lemma 4 shows that if a symmetric algorithm could be proven to be (γ,K)-uniformly stable, we could bound its gener-
alization error by capturing its stability parameter γ. Then we show the proof of generalization bound for (10) following this
idea.

Proof of Theorem 1.

Theorem 1. (generalization bound) If Assumption 1 and 2 hold. With α ≤ 1
2L , βt ≤

1
αρG+(1−αδ−αµ)2L , δ < 1

2α and
αρG
µ < ( 12 − αL)

2. The model Ã(S) generated by the last iterate of MAML with regularized updating rule introduced in (6)
of the main paper satisfies

EÃ,S [F (Ã(S))− F̂ (Ã(S),S)] ≤
2G2(1 + αL)(1− αµ− αδ + (2 + αL− αδ)αLK)

mn
(

1

αρG+ (1− αδ − αµ)2L
+

1

−αρG+ (1− αδ − αL)2µ
)

where the expectation is taken over the randomness of Ã and sampling of S.

Proof. The result in Lemma 4 means that we could bound the generalization error of MAML with inner-level regularization
Ã by proving its (γ,K)-uniformly stable as defined in Definition 2 and capture the γ parameter.

The Definition 2 of (γ,K)-uniformly stability means that there is a dataset S̄ which is the same as S except one i such
that:

- S̄ in
i has at most K data points different from S in

i . We denote the K samples in each dataset by {zj}Kj=1 and {z̄j}Kj=1.
- S̄out

i has at most 1 data points different from Sout
i . They are denoted by ζ and ζ̄.

We consider the two parallel processes of training {wt} and {w̄t} using datasets S and S̄. The bar superscript is used
to denote the process using S̄. Dt, out

i and Dt,in
i are referring to indices of samples in Dt, out

i and Dt,in
i , respectively. We

could assume the parallel using a same random machine to sample batches for generating {wt} and {w̄t}, i.e., Bt = B̄t,
Dt, out

i = D̄t, out
i , and Dt,in

i = D̄t,in
i

We use vt to denote the number of indices corresponding to {zj}Kj=1 (or {z̄j}Kj=1 ) is chosen in Dt,in
i . And ut is denoting

the number of times that the index of sample ζ (or ζ̄ ) is chosen in Dt, out
i , respectively. As shown in [3], recalling the

definition of b and r from Algorithm 2, for each t, the expectations of vt and ut are given by

E [vt] =
K2r

nm
, E [ut] =

br

nm
(11)
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Then we are coming to the main proof. We first claim that

EÃ
[∥∥wT − w̄T

∥∥] ≤ 2G(1− αµ− αδ + (2 + αL− αδ)αLK)

mn
(

1

αρG+ (1− αδ − αµ)2L
+

1

−αρG+ (1− αδ − αL)2µ
)

(12)
when conditions in Assumption 1 are satisfied and {wT , w̄T } is generated using Ã. The next is to prove this claim. To
simplify the notation, let us define ψ(w;D, z) := ℓ(w − α∇w(L̂(w,D) + δ

2∥w∥
2), z). Note that

ψ(w;D, z) := ℓ(w − α∇w(L̂(w,D) +
δ

2
∥w∥2), z)

= ℓ((1− αδ)w − α∇L̂(w,D), z)

and
∇ψ(w;D, z) =

(
(1− αδ)I − α∇2L̂ (w,D)

)
∇ℓ
(
(1− αδ)w − α∇L̂ (w,D) , z

)
.

Recalling from Lemma 1, we know for a λ-strongly convex and η-smooth function ϕ, we have

∥(u− β∇ϕ(u))− (v − β∇ϕ(v))∥ ≤
(
1− βλη

λ+ η

)
∥u− v∥

for any u and v.
And Lemma 3 shows that for any batch D and any z ∈ Z, ψ(w;D, z) is αρG+ (1− αδ − αµ)2L smooth and −αρG+

(1− αδ − αL)2µ strongly convex. Hence, using Lemma 1, for any j ∈ Bt that j ̸= i, we have

∥∥wt+1
j − w̄t+1

j

∥∥ ≤ (1− βt 1
1

αρG+(1−αδ−αµ)2L + 1
−αρG+(1−αδ−αL)2µ

)∥∥wt − w̄t
∥∥ . (13)

Next, For the case that i ∈ Bt, we could have∥∥wt+1
i − w̄t+1

i

∥∥ ≤1

b

∑
z∈Dt, out

i

∥∥∥(wt − βt∇ψ
(
wt;Dt, in

i , z
))
−
(
w̄t − βt∇ψ

(
w̄t; D̄t, in

i , z
))∥∥∥

+
1

b
βt

∑
z∈D̄t, out

i /Dt, out
i

∥∥∥∇ψ (w̄t; D̄t, in
i , z

)
−∇ψ

(
wt;Dt, in

i , z
)∥∥∥ . (14)

To bound the second term on RHS of (14), we first consider that

∥∇ψ(w;D, z)∥ = ∥
(
(1− αδ)I − α∇2L̂ (w,D)

)
∇ℓ
(
(1− αδ)w − α∇L̂ (w,D) , z

)
∥

≤ ∥
(
(1− αδ)I − α∇2L̂ (w,D)

)
∥∥∇ℓ

(
(1− αδ)w − α∇L̂ (w,D) , z

)
∥

≤ (1− αµ− αδ)G.

(15)

The last inequality is due to bounded gradient assumption for ℓ(·, z) and (1− αδ)I − α∇2L̂ (w,D) being symmetric, semi-
positive definite, and λmax

(
(1− αδ)I − α∇2L̂ (w,D)

)
≤ (1− αδ)− αµ (see Lemma 2). Then, we have∥∥∥∇ψ (w̄t; D̄t, in

i , z
)
−∇ψ

(
wt;Dt, in

i , z
)∥∥∥ ≤ ∥∥∥∇ψ (w̄t; D̄t, in

i , z
)
∥+ ∥∇ψ

(
wt;Dt, in

i , z
)∥∥∥

≤ 2(1− αµ− αδ)G.
(16)

Since
∣∣D̄t,out

i /Dt, out
i

∣∣ = ut, using the above result, the second term of (14)’s RHS could be bounded by 2βtutG(1 − αµ −
αδ)/b, i.e., ∥∥wt+1

i − w̄t+1
i

∥∥ ≤ 2βtG(1− αµ− αδ)
ut
b

+
1

b

∑
z∈Dt, out

i

∥∥∥(wt − βt∇ψ
(
wt;Dt, in

i , z
))
−
(
w̄t − βt∇ψ

(
w̄t; D̄t, in

i , z
))∥∥∥ . (17)
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For the second term, note that∥∥∥(wt − βt∇ψ
(
wt;Dt, in

i , z
))
−
(
w̄t − βt∇ψ

(
w̄t; D̄t, in

i , z
))∥∥∥

≤
∥∥∥(wt − βt∇ψ

(
wt;Dt, in

i , z
))
−
(
w̄t − βt∇ψ

(
w̄t;Dt, in

i , z
))∥∥∥

+ βt

∥∥∥∇ψ (w̄t;Dt, in
i , z

)
−∇ψ

(
w̄t; D̄t, in

i , z
)∥∥∥ .

(18)

For the first term on the RHS of (18), we could bound it similarly to the derivation of (13) by∥∥∥(wt − βt∇ψ
(
wt;Dt, in

i , z
))
−
(
w̄t − βt∇ψ

(
w̄t;Dt, in

i , z
))∥∥∥

≤

(
1− βt

1
1

αρG+(1−αδ−αµ)2L + 1
−αρG+(1−αδ−αL)2µ

)∥∥wt − w̄t
∥∥ . (19)

And for the second term on the RHS of (18), we have∥∥∥∇ψ (w̄t;Dt, in
i , z

)
−∇ψ

(
w̄t; D̄t, in

i , z
)∥∥∥

= ∥
(
(1− αδ)I − α∇2L̂

(
w̄t,Dt, in

i

))
∇ℓ
(
(1− αδ)w̄t − α∇L̂

(
w̄t,Dt, in

i

)
, z
)

−
(
(1− αδ)I − α∇2L̂

(
w̄t, D̄t, in

i

))
∇ℓ
(
(1− αδ)w̄t − α∇L̂

(
w̄t, D̄t, in

i

)
, z
)
∥

≤ (1− αδ)
∥∥∥∇ℓ((1− αδ)w̄t − α∇L̂

(
w̄t,Dt, in

i

)
, z
)
−∇ℓ

(
(1− αδ)w̄t − α∇L̂

(
w̄t, D̄t, in

i

)
, z
)∥∥∥+

α∥∇2L̂
(
w̄t,Dt, in

i

)
∇ℓ
(
(1− αδ)w̄t − α∇L̂

(
w̄t,Dt, in

i

)
, z
)

−∇2L̂
(
w̄t, D̄t, in

i

)
∇ℓ
(
(1− αδ)w̄t − α∇L̂

(
w̄t, D̄t, in

i

)
, z
)
∥

≤ (1− αδ)
∥∥∥∇ℓ((1− αδ)w̄t − α∇L̂

(
w̄t,Dt, in

i

)
, z
)
−∇ℓ

(
(1− αδ)w̄t − α∇L̂

(
w̄t, D̄t, in

i

)
, z
)∥∥∥+

α∥∇2L̂
(
w̄t,Dt, in

i

)
∇ℓ
(
(1− αδ)w̄t − α∇L̂

(
w̄t,Dt, in

i

)
, z
)
−∇2L̂

(
w̄t,Dt, in

i

)
∇ℓ
(
(1− αδ)w̄t − α∇L̂

(
w̄t, D̄t, in

i

)
, z
)
+

∇2L̂
(
w̄t,Dt, in

i

)
∇ℓ
(
(1− αδ)w̄t − α∇L̂

(
w̄t, D̄t, in

i

)
, z
)
−∇2L̂

(
w̄t, D̄t, in

i

)
∇ℓ
(
(1− αδ)w̄t − α∇L̂

(
w̄t, D̄t, in

i

)
, z
)
∥

≤ (1− αδ)
∥∥∥∇ℓ((1− αδ)w̄t − α∇L̂

(
w̄t,Dt, in

i

)
, z
)
−∇ℓ

(
(1− αδ)w̄t − α∇L̂

(
w̄t, D̄t, in

i

)
, z
)∥∥∥+

α∥∇2L̂
(
w̄t,Dt, in

i

)
∥∥∇ℓ

(
(1− αδ)w̄t − α∇L̂

(
w̄t,Dt, in

i

)
, z
)
−∇ℓ

(
(1− αδ)w̄t − α∇L̂

(
w̄t, D̄t, in

i

)
, z
)
∥+

α∥∇2L̂
(
w̄t,Dt, in

i

)
−∇2L̂

(
w̄t, D̄t, in

i

)
∥∥∇ℓ

(
(1− αδ)w̄t − α∇L̂

(
w̄t, D̄t, in

i

)
, z
)
∥

≤ (1− αδ + αL)
∥∥∥∇ℓ((1− αδ)w̄t − α∇L̂

(
w̄t,Dt, in

i

)
, z
)
−∇ℓ

(
(1− αδ)w̄t − α∇L̂

(
w̄t, D̄t, in

i

)
, z
)∥∥∥+

αG
∥∥∥∇2L̂

(
w̄t,Dt, in

i

)
−∇2L̂

(
w̄t, D̄t, in

i

)∥∥∥ .
(20)

The last inequality is given by the smoothness and bounded gradient assumption for ℓ(·, z). Next, we are going to bound the
terms in (20). Note that∥∥∥∇ℓ((1− αδ)w̄t − α∇L̂

(
w̄t,Dt, in

i

)
, z
)
−∇ℓ

(
(1− αδ)w̄t − α∇L̂

(
w̄t, D̄t, in

i

)
, z
)∥∥∥

≤ αL
∥∥∥∇L̂(w̄t,Dt, in

i

)
−∇L̂

(
w̄t, D̄t, in

i

)∥∥∥ ≤ 2αLG
vt
K

and ∥∥∥∇2L̂
(
w̄t,Dt, in

i

)
−∇2L̂

(
w̄t, D̄t, in

i

)∥∥∥ ≤ 2L
vt
K
.
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Putting the above two results into (20), we have∥∥∥∇ψ (w̄t;Dt, in
i , z

)
−∇ψ

(
w̄t; D̄t, in

i , z
)∥∥∥ ≤ 2(1− αδ + αL)αLG

vt
K

+ 2αLG
vt
K

= 2(2 + αL− αδ)αLGvt
K
.

(21)

Putting the result in (19) and (18) into (17), we have∥∥wt+1
i − w̄t+1

i

∥∥ ≤ (1− βt 1
1

αρG+(1−αδ−αµ)2L + 1
−αρG+(1−αδ−αL)2µ

)∥∥wt − w̄t
∥∥

+ 2βtG((1− αµ− αδ)
ut
b

+ αL(2 + αL− αδ) vt
K

).

Along with (13), we have∥∥∥∥∥∥1r
∑
j∈Bt

wt+1
j − 1

r

∑
j∈Bt

w̄t+1
j

∥∥∥∥∥∥ ≤
(
1− βt

1
1

αρG+(1−αδ−αµ)2L + 1
−αρG+(1−αδ−αL)2µ

)∥∥wt − w̄t
∥∥

+ 2βtG((1− αµ− αδ)
ut
rb

+ αL(2 + αL− αδ) vt
rK

),

which indicates ∥∥wt+1 − w̄t+1
∥∥ ≤ (1− βt 1

1
αρG+(1−αδ−αµ)2L + 1

−αρG+(1−αδ−αL)2µ

)∥∥wt − w̄t
∥∥

+ 2βtG((1− αµ− αδ)
ut
rb

+ αL(2 + αL− αδ) vt
rK

).

Using (11), we could take the expectation for both sides and get

EÃ
[∥∥wt+1 − w̄t+1

∥∥] ≤ (1− βt 1
1

αρG+(1−αδ−αµ)2L + 1
−αρG+(1−αδ−αL)2µ

)
EÃ
[∥∥wt − w̄t

∥∥]
+ 2

βtG

mn
(1− αµ− αδ + (2 + αL− αδ)αLK).

The bound could be rewritten as

EÃ
[∥∥wt+1 − w̄t+1

∥∥] ≤ (1− βtλ)EÃ
[∥∥wt − w̄t

∥∥]+ βtη,

where the λ and η are given by

λ :=
1

1
αρG+(1−αδ−αµ)2L + 1

−αρG+(1−αδ−αL)2µ

, η :=
2G

mn
(1− αµ− αδ + (2 + αL− αδ)αLK).

In fact, the main claim (12) is equivalent to
EÃ
[∥∥wt − w̄t

∥∥] ≤ η

λ
.

For t = 1, this is true because of β0 ≤ 1
αρG+(1−αδ−αµ)2L ≤

1
λ . Then the result could be easily obtained by induction. The

result could be written as.

EÃ
[∥∥wT − w̄T

∥∥] ≤ 2G(1− αµ− αδ + (2 + αL− αδ)αLK)

mn
(

1

αρG+ (1− αδ − αµ)2L
+

1

−αρG+ (1− αδ − αL)2µ
).

Having proved the above result, we are ready to finish proving Theorem 1. We have∣∣∣ℓ(wT − α∇L̂
(
wT , {zj}Kj=1

)
, z̄
)
− ℓ

(
w̄T − α∇L̂

(
w̄T , {zj}Kj=1

)
, z̄
)∣∣∣

≤ G
∥∥∥(wT − α∇L̂

(
wT , {zj}Kj=1

)
, z̄
)
−
(
w̄T − α∇L̂

(
w̄T , {zj}Kj=1

)
, z̄
)∥∥∥

≤ G∥wT − w̄T ∥+ αG∥∇L̂
(
wT , {zj}Kj=1

)
−∇L̂

(
w̄T , {zj}Kj=1

)
∥

≤ (1 + αL)G∥wT − w̄T ∥.
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Then,

EÃ

[
ℓ
(
wT − α∇L̂

(
wT , {zj}Kj=1

)
, z̄
)
− ℓ

(
w̄T − α∇L̂

(
w̄T , {zj}Kj=1

)
, z̄
)]
≤

2G2(1 + αL)(1− αµ− αδ + (2 + αL− αδ)αLK)

mn
(

1

αρG+ (1− αδ − αµ)2L
+

1

−αρG+ (1− αδ − αL)2µ
).

This means the algorithm is (γ,K)-uniformly stable with RHS as the γ parameter.
Finally, for the meta-testing phase learning objective of the original MAML (unregularized), by Lemma 4, the generalization
bound in (10) is given by

EÃ,S [F (Ã(S))− F̂ (Ã(S),S)] ≤
2G2(1 + αL)(1− αµ− αδ + (2 + αL− αδ)αLK)

mn
(

1

αρG+ (1− αδ − αµ)2L
+

1

−αρG+ (1− αδ − αL)2µ
),

where F (·) and F̂ (·,S) are population loss and empirical loss for unregularized MAML, respectively. The proof is complete.

A.2.3 Training Bias

In this section, we give the proof of Theorem 2 on training bias bound in the paper.

Theorem 2. (training bias bound) If Assumption 1 and 2 hold. With α ≤ 1
2L , δ < 1

2α and αρG
µ < ( 12 − αL)

2. The training
bias from MAML with inner-level L2 regularization to the original MAML is bounded by

ES

[
F̂ (argmin

W

ˆ̃F (·,S),S)−min
W

F̂ (·,S)
]
≤ α2(αρG+ (1− αµ)2L)((1− αµ− αδ)L∥w∗∥+G)2δ2

2(−αρG+ (1− αL− αδ)2µ)2

where ∥w∗∥ := maxS ∥ argminw F̂ (w,S)∥, the expectation is taken over sampling of S.

Proof. The empirical loss of unregularized MAML is defined by

F̂ (w,S) := 1

m

m∑
i=1

F̂i (w,Si) , (22)

where F̂i (·,Si) is given by

F̂i (w,Si) : =
1(
n
k

) ∑
Din

i
⊂Sin

i

|Din
i |=K

1

n

∑
z∈Sout

i

ℓ

w − α

K

∑
z′∈Din

i

∇ℓ (w, z′) , z


=

1(
n
k

) ∑
Din

i
⊂Sin

i

|Din
i |=K

L̂
(
w − α∇L̂

(
w,Din

i

)
,Sout

i

)
.

(23)

So (22) could also be written as

F̂ (w,S) := 1

m

1(
n
k

) m∑
i=1

∑
Din

i
⊂Sin

i

|Din
i |=K

L̂
(
w − α∇L̂

(
w,Din

i

)
,Sout

i

)
. (24)

For MAML with inner-level L2-Norm regularization, the corresponding empirical loss is given by

ˆ̃F (w,S) := 1

m

1(
n
k

) m∑
i=1

∑
Din

i
⊂Sin

i

|Din
i |=K

L̂
(
w − α∇w(L̂

(
w,Din

i

)
+
δ

2
∥w∥2),Sout

i

)
, (25)
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where δ is the parameter for regularization. Our goal is to bound the training bias

F̂ (argmin
W

ˆ̃F (·,S),S)−min
W

F̂ (·,S) = F̂ (argmin
W

ˆ̃F (·,S),S)− F̂ (argmin
W

F̂ (·,S),S). (26)

To bound (26), we could first bound
∥argmin

W

ˆ̃F (·,S)− argmin
W

F̂ (·,S).∥ (27)

We denote the two model parameters by
u := argmin

W
F̂ (·,S)

and
v := argmin

W

ˆ̃F (·,S).

Lemma 3 shows the strongly convexity of both L̂
(
w − α∇L̂

(
w,Din

i

)
,Sout

i

)
and L̂

(
w − α∇w(L̂

(
w,Din

i

)
+ δ

2∥w∥
2),Sout

i

)
,

which also indicates the strongly convexity of F̂ (·,S) and ˆ̃F (·,S). Suppose the optimal solution lies withinW for F̂ (·,S)
and ˆ̃F (·,S), we have

∇F̂ (u,S) = 1

m

1(
n
k

) m∑
i=1

∑
Din

i
⊂Sin

i

|Din
i |=K

∇wL̂
(
w − α∇L̂

(
w,Din

i

)
,Sout

i

)∣∣∣∣∣∣∣∣∣
w=u

= 0 (28)

and

∇ ˆ̃F (v,S) = 1

m

1(
n
k

) m∑
i=1

∑
Din

i
⊂Sin

i

|Din
i |=K

∇wL̂
(
w − α∇w(L̂

(
w,Din

i

)
+
δ

2
∥w∥2),Sout

i

)∣∣∣∣∣∣∣∣∣
w=v

= 0. (29)

Note that
∇wL̂

(
w − α∇L̂

(
w,Din

i

)
,Sout

i

)
=(

Id − α∇2L̂
(
w,Din

i

))
∇L̂

(
w − α∇L̂

(
w,Din

i

)
,Dout

i

) (30)

and

∇wL̂
(
w − α∇w(L̂

(
w,Din

i

)
+
δ

2
∥w∥2),Sout

i

)
=(

(1− αδ)Id − α∇2L̂
(
w,Din

i

))
∇L̂

(
(1− αδ)w − α∇L̂

(
w,Din

i

)
,Dout

i

)
.

(31)

By plugging (30) and (31) into (28) and (29) respectively, we have

∇F̂ (u,S) = 1

m

1(
n
k

) m∑
i=1

∑
Din

i
⊂Sin

i

|Din
i |=K

(
Id − α∇2L̂

(
u,Din

i

))
∇L̂

(
u− α∇L̂

(
u,Din

i

)
,Dout

i

)
= 0 (32)

and

∇ ˆ̃F (v,S) = 1

m

1(
n
k

) m∑
i=1

∑
Din

i
⊂Sin

i

|Din
i |=K

(
(1− αδ)Id − α∇2L̂

(
v,Din

i

))
∇L̂

(
(1− αδ)v − α∇L̂

(
v,Din

i

)
,Dout

i

)
= 0. (33)
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Then, we could bound ∥∇ ˆ̃F (u,S)−∇ ˆ̃F (v,S)∥ by

∥∇ ˆ̃F (u,S)−∇ ˆ̃F (v,S)∥

= ∥∇ ˆ̃F (u,S)− 0∥ =

= ∥∇ ˆ̃F (u,S)−∇F̂ (u,S)∥

= ∥ 1
m

1(
n
k

) m∑
i=1

∑
Din

i
⊂Sin

i

|Din
i |=K

(
(1− αδ)Id − α∇2L̂

(
u,Din

i

))
∇L̂

(
(1− αδ)u− α∇L̂

(
u,Din

i

)
,Dout

i

)

− 1

m

1(
n
k

) m∑
i=1

∑
Din

i
⊂Sin

i

|Din
i |=K

(
Id − α∇2L̂

(
u,Din

i

))
∇L̂

(
u− α∇L̂

(
u,Din

i

)
,Dout

i

)
∥

(a)
= ∥ 1

m

1(
n
k

) m∑
i=1

∑
Din

i
⊂Sin

i

|Din
i |=K

[ (
(1− αδ)Id − α∇2L̂

(
u,Din

i

))
∇L̂

(
(1− αδ)u− α∇L̂

(
u,Din

i

)
,Dout

i

)

−
(
Id − α∇2L̂

(
u,Din

i

))
∇L̂

(
u− α∇L̂

(
u,Din

i

)
,Dout

i

) ]
∥

= ∥ 1
m

1(
n
k

) m∑
i=1

∑
Din

i
⊂Sin

i

|Din
i |=K[ (

(1− αδ)Id − α∇2L̂
(
u,Din

i

))(
∇L̂

(
(1− αδ)u− α∇L̂

(
u,Din

i

)
,Dout

i

)
−∇L̂

(
u− α∇L̂

(
u,Din

i

)
,Dout

i

))
− αδ∇L̂

(
u− α∇L̂

(
u,Din

i

)
,Dout

i

) ]
∥

(b)

≤ 1

m

1(
n
k

) m∑
i=1

∑
Din

i
⊂Sin

i

|Din
i |=K

∥
(
(1− αδ)Id − α∇2L̂

(
u,Din

i

))(
∇L̂

(
(1− αδ)u− α∇L̂

(
u,Din

i

)
,Dout

i

)
−∇L̂

(
u− α∇L̂

(
u,Din

i

)
,Dout

i

))
− αδ∇L̂

(
u− α∇L̂

(
u,Din

i

)
,Dout

i

)
∥

(c)

≤ 1

m

1(
n
k

) m∑
i=1

∑
Din

i
⊂Sin

i

|Din
i |=K(

∥
(
(1− αδ)Id − α∇2L̂

(
u,Din

i

))(
∇L̂

(
(1− αδ)u− α∇L̂

(
u,Din

i

)
,Dout

i

)
−∇L̂

(
u− α∇L̂

(
u,Din

i

)
,Dout

i

))
∥

+ α|δ|∥∇L̂
(
u− α∇L̂

(
u,Din

i

)
,Dout

i

)
∥
)

(d)

≤ 1

m

1(
n
k

) m∑
i=1

∑
Din

i
⊂Sin

i

|Din
i |=K(

(1− αµ− αδ)L∥((1− αδ)u− α∇L̂
(
u,Din

i

)
)− (u− α∇L̂

(
u,Din

i

)
)∥

+ α|δ|G
)

=
1

m

1(
n
k

)m(n
k

)(
(1− αµ− αδ)L∥αδu∥+ α|δ|G

)
=
(
α|δ|(1− αµ− αδ)L∥u∥+ α|δ|G

)
= α|δ|

(
(1− αµ− αδ)L∥u∥+G

)
.

(34)
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Here, (a) is by combining each term with the same index within the two summations, (b) and (c) are due to triangle inequality,
and (d) is due to the strongly convex, smooth and bounded gradient property of L̂

(
·,Din

i

)
.

By the definition of u and v, (34) actually shows

∥∇ ˆ̃F (argmin
W

F̂ (·,S),S)−∇ ˆ̃F (argmin
W

ˆ̃F (·,S),S)∥ ≤ α|δ|
(
(1− αµ− αδ)L∥argmin

W
F̂ (·,S)∥+G

)
. (35)

Lemma 3 also indicates that ˆ̃F (·,S) is (−αρG+(1−αL−αδ)2µ) strongly-convex, so we could bound ∥argmin
W

ˆ̃F (·,S)−

argmin
W

F̂ (·,S)∥ by

∥argmin
W

ˆ̃F (·,S)− argmin
W

F̂ (·,S)∥ ≤ 1

(−αρG+ (1− αL− αδ)2µ)
∥∇ ˆ̃F (argmin

W

ˆ̃F (·,S),S)−∇ ˆ̃F (argmin
W

F̂ (·,S),S)∥

≤ 1

(−αρG+ (1− αL− αδ)2µ)
α|δ|

(
(1− αµ− αδ)L∥argmin

W
F̂ (·,S)∥+G

)
.

(36)
Take square for both sides of (36), we have

∥argmin
W

ˆ̃F (·,S)− argmin
W

F̂ (·,S)∥2 ≤
(

1

(−αρG+ (1− αL− αδ)2µ)
α|δ|

(
(1− αµ− αδ)L∥argmin

W
F̂ (·,S)∥+G

))2

,

(37)
and then take the expectation over the sampling of S, we further have

ES

[
∥argmin

W

ˆ̃F (·,S)− argmin
W

F̂ (·,S)∥2
]
≤
(

1

(−αρG+ (1− αL− αδ)2µ)
α|δ|

(
(1− αµ− αδ)L∥w∗∥+G

))2

,

(38)
where ∥w∗∥ := maxS ∥ argminw F̂ (w,S)∥, the maximum is taken over sampling of S.
Recall from Lemma 3 that F̂ (·,S) is (αρG + (1 − αµ)2L) smooth, and note that ∇F̂ (argmin

W
F̂ (·,S),S) = 0, we could

bound (26) by

F̂ (argmin
W

ˆ̃F (·,S),S)−min
W

F̂ (·,S) = F̂ (argmin
W

ˆ̃F (·,S),S)− F̂ (argmin
W

F̂ (·,S),S)

≤ 1

2
(αρG+ (1− αµ)2L)∥argmin

W

ˆ̃F (·,S)− argmin
W

F̂ (·,S)∥2.
(39)

Finally, by taking the expectation, we have

ES

[
F̂ (argmin

W

ˆ̃F (·,S),S)−min
W

F̂ (·,S)
]

≤ ES

[
1

2
(αρG+ (1− αµ)2L)∥argmin

W

ˆ̃F (·,S)− argmin
W

F̂ (·,S)∥2
]

=
1

2
(αρG+ (1− αµ)2L)ES

[
∥argmin

W

ˆ̃F (·,S)− argmin
W

F̂ (·,S)∥2
]

(a)

≤ 1

2
(αρG+ (1− αµ)2L)

(
1

(−αρG+ (1− αL− αδ)2µ)
α|δ|

(
(1− αµ− αδ)L∥w∗∥+G

))2

=
α2(αρG+ (1− αµ)2L)((1− αµ− αδ)L∥w∗∥+G)2δ2

2(−αρG+ (1− αL− αδ)2µ)2
.

(40)

(a) is because of (38). The proof is complete.
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A.3. Further Analysis

A.3.1 Property of Generalization Error Bound

In 4.1, we claimed that if we regard the generalization bound as a function GB(δ), its derivative GB′(δ) would be positive
for δ ∈ (−∞, 1

2α ), i.e.,

GB′(δ) > 0 ∀δ ∈ (−∞, 1

2α
) (41)

In this section, we provide proof of this claim.

Proof. Based on the result of Theorem 1, the function GB(δ) is given by

GB(δ) =
2G2(1 + αL)(1− αµ− αδ + (2 + αL− αδ)αLK)

mn
(

1

αρG+ (1− αδ − αµ)2L
+

1

−αρG+ (1− αδ − αL)2µ
).

Taking its derivative, we have

GB′(δ) =

2αG2(1 + αL)

mn(−αρG+ (1− αδ − αL)2µ)
·

(−(αLK + 1)((1− αδ − αL)2µ− αρG) + 2µ(1− αδ − αL)(αLK(2 + αL− αδ) + (1− αδ − αµ))
+

2αG2(1 + αL)

mn(αρG+ (1− αδ − αµ)2L)
·

(−(αLK + 1)((1− αδ − αµ)2L+ αρG) + 2L(1− αδ − αµ)(αLk(2 + αL− αδ) + (1− αδ − αµ))).

(42)

To prove (41), we are going to prove both terms on RHS of (42) are greater than 0 for δ ∈ (−∞, 1
2α ).

For the first term on RHS of (42), having 2αG2(1+αL)
mn(−αρG+(1−αδ−αL)2µ) > 0, we only need to prove

−(αLK + 1)((1− αδ − αL)2µ− αρG) + 2µ(1− αδ − αL)(αLK(2 + αL− αδ) + (1− αδ − αµ) > 0. (43)

(43) could be re-written by

−(αLK + 1)((1− αδ − αL)2µ− αρG) + 2µ(1− αδ − αL)((αLK + 1)(2 + αL− αδ)− (1 + αL+ αµ)) > 0. (44)

Then, since µ > 0, (αLK + 1) > 0 and (1 − αδ − αL) > 0, when δ < 1
2α , by dividing both sides of (44) by µ(1 − αδ −

αL)(αLK + 1), we find this inequality is equivalent to

−(1− αδ − αL− αρG

µ(1− αδ − αL)
) + 2(2 + αL− αδ − 1 + αL+ αµ

αLK + 1
) > 0. (45)

(45) is equivalent to

3 + 3αL− αδ + αρG

µ(1− αδ − αL)
− 2(1 + αL+ αµ)

αLK + 1
> 0. (46)

Since αLK + 1 > 1, (46) is true if

3 + 3αL− αδ + αρG

µ(1− αδ − αL)
− 2(1 + αL+ αµ) > 0. (47)

By recombining the LHS of (47), we obtain its equivalent form

(1− αµ− αδ) + α(L− µ) + αρG

µ(1− αδ − αL)
> 0. (48)

When δ < 1
2α , (48) is true since (1 − αµ− αδ) > 0 , αρG

µ(1−αδ−αL) > 0, and α(L − µ) is non-negative. This proves (43) to
be true and shows the first term of (42)’s RHS is greater than 0 for δ ∈ (−∞, 1

2α ).
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Then, we move on to prove the second term of (42)’s RHS is greater than 0 for δ ∈ (−∞, 1
2α ). Having 2αG2(1+αL)

mn(−αρG+(1−αδ−αµ)2L) >

0, we only need to prove

−(αLK + 1)((1− αδ − αµ)2L+ αρG) + 2L(1− αδ − αµ)(αLK(2 + αL− αδ) + (1− αδ − αµ) > 0. (49)

Similar to the proof of the first term, when δ < 1
2α we could obtain an equivalent inequality for (49) by dividing its both sides

by L(1− αδ − αµ)(αLK + 1) and reordering:

3 + 2αL+ αµ− αδ − αρG

L(1− αδ − αµ)
− 2

1 + αL+ αµ

αLK + 1
> 0. (50)

Since αρG
µ < ( 12 − αL)

2 and αLk + 1 > 1, (50) is true if

3 + 2αL+ αµ− αδ −
µ( 12 − αL)

2

L(1− αδ − αµ)
− 2(1 + αL+ αµ) ≥ 0. (51)

Note that we have

µ( 12 − αL)
2

L(1− αδ − αµ)
(a)
<

µ(1− αδ − αL)2

L(1− αδ − αµ)
(b)

≤ L(1− αδ − αL)2

L(1− αδ − αL)
= 1− αδ − αL, (52)

where (a) is true when δ < 1
2α and (b) is because of µ ≤ L. By plugging (52) into (51), we have (51) being true when

3 + 2αL+ αµ− αδ − (1− αδ − αL)− 2(1 + αL+ αµ) ≥ 0 (53)

(53) is equivalent to
αL− αµ ≥ 0. (54)

This is obviously true since we have α > 0 and L ≥ µ. This proves (49) to be true and shows the second term of (42)’s RHS
is greater than 0 for δ ∈ (−∞, 1

2α ).
Since both terms of (42)’s RHS being greater than 0 for δ < 1

2α has been proved, the conclusionGB′(δ) > 0∀δ ∈ (−∞, 1
2α )

in (41) is obtained. The proof is complete.

A.3.2 Property of Training Bias Bound

In 4.2, we claimed that if we regard the training bais bound as a function TB(δ), for a legal positive choice of δ-value δ0, we
would always have TB(δ0) > TB(−δ0), i.e.,

TB(δ0) > TB(−δ0) ∀δ0 ∈ (0,
1

2α
) (55)

In this section, we provide proof of this claim.

Proof. From the result of Theorem 2, the training bias bound function of δ is given by

TB(δ) =
α2(αρG+ (1− αµ)2L)((1− αµ− αδ)L∥w∗∥+G)2δ2

2(−αρG+ (1− αL− αδ)2µ)2
. (56)

It’s easy to find that TB(δ) > 0 for any δ ̸= 0. So the conclusion (55) is equivalent to

TB(δ0)

TB(−δ0)
> 1 ∀δ0 ∈ (0,

1

2α
). (57)

By plugging (56) into (57), (57) is equivalent to

((1− αµ− αδ0)L∥w∗∥+G)2

((1− αµ+ αδ0)L∥w∗∥+G)2
(−αρG+ (1− αL+ αδ0)

2µ)2

(−αρG+ (1− αL− αδ0)2µ)2
> 1 ∀δ0 ∈ (0,

1

2α
). (58)
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By taking the square root for both sides, (58) is equivalent to

((1− αµ− αδ0)L∥w∗∥+G)

((1− αµ+ αδ0)L∥w∗∥+G)

(−αρG+ (1− αL+ αδ0)
2µ)

(−αρG+ (1− αL− αδ0)2µ)
> 1 ∀δ0 ∈ (0,

1

2α
). (59)

A sequence of equivalent transformations on (59) can be performed as follows:
(59) ⇐⇒

((1− αµ− αδ0) + G
L∥w∗∥ )

((1− αµ+ αδ0) +
G

L∥w∗∥ )

(−αρG
µ + (1− αL+ αδ0)

2)

(−αρG
µ + (1− αL− αδ0)2)

> 1 ∀δ0 ∈ (0,
1

2α
).

⇐⇒
((1− αµ+ G

L∥w∗∥ )− αδ0)
((1− αµ+ G

L∥w∗∥ ) + αδ0)

((−αρG
µ + (1− αL)2 + α2δ0

2) + 2αδ0(1− αL))
((−αρG

µ + (1− αL)2 + α2δ0
2)− 2αδ0(1− αL))

> 1 ∀δ0 ∈ (0,
1

2α
).

⇐⇒
((1− αµ+

G

L∥w∗∥
)− αδ0)((−

αρG

µ
+ (1− αL)2 + α2δ0

2) + 2αδ0(1− αL)) >

((1− αµ+
G

L∥w∗∥
) + αδ0)((−

αρG

µ
+ (1− αL)2 + α2δ0

2)− 2αδ0(1− αL)) ∀δ0 ∈ (0,
1

2α
).

⇐⇒
((1− αµ+

G

L∥w∗∥
)(−αρG

µ
+ (1− αL)2 + α2δ0

2)− 2α2δ0
2(1− αL))

+ (2αδ0(1− αL)(1− αµ+
G

L∥w∗∥
)− αδ0(−

αρG

µ
+ (1− αL)2 + α2δ0

2)) >

((1− αµ+
G

L∥w∗∥
)(−αρG

µ
+ (1− αL)2 + α2δ0

2)− 2α2δ0
2(1− αL))

− (2αδ0(1− αL)(1− αµ+
G

L∥w∗∥
)− αδ0(−

αρG

µ
+ (1− αL)2 + α2δ0

2)) ∀δ0 ∈ (0,
1

2α
).

⇐⇒
(2αδ0(1− αL)(1− αµ+

G

L∥w∗∥
)− αδ0(−

αρG

µ
+ (1− αL)2 + α2δ0

2)) > 0 ∀δ0 ∈ (0,
1

2α
).

⇐⇒
2(1− αL)(1− αµ+

G

L∥w∗∥
) > −αρG

µ
+ (1− αL)2 + α2δ0

2 ∀δ0 ∈ (0,
1

2α
). (60)

For (60)’s LHS, since µ ≤ L and α ≤ 1
2L , we have

2(1− αL)(1− αµ+
G

L∥w∗∥
) > 2(1− αL)(1− αL+ 0) ≥ 2(1− 1

2L
· L)(1− 1

2L
· L+ 0) =

1

2
∀δ0 ∈ (0,

1

2α
). (61)

For (60)’s RHS, since α ≤ 1
2L and δ0 < 1

2α , we have

−αρG
µ

+ (1− αL)2 + α2δ0
2 < 0 + (1− 1

2L
· L)2 + α2(

1

2α
)2 =

1

2
∀δ0 ∈ (0,

1

2α
). (62)

Taking the result of (61) and (62) altogether, (60) is true since

2(1− αL)(1− αµ+
G

L∥w∗∥
) >

1

2
> −αρG

µ
+ (1− αL)2 + α2δ0

2 ∀δ0 ∈ (0,
1

2α
).

The proven (55) is equivalent to the desired conclusion. The proof is complete.
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B. Supplementary Experiment Details
This section provides more details about the experimental settings and hyper-parameter choices.

B.1. Few-shot Classification

Algorithm 3 MAML with inner- and outer-level regularization

Require: Datasets S =
{
S in
i ,Sout

i

}m
i=1

; few-shot meta-query batch size K ; the number of training tasks sampled at each
round r; the total number of iterations T .

Require: Regularization term Reg(w,D); Inner-level regularization selector σin ∈ {−1, 0, 1}, Outer-level regularization
selector σout ∈ {−1, 0, 1}.

1: Initialize the model parameters w0 randomly.
2: for t = 0 to T − 1 do
3: Randomly select r tasks from the set of m available tasks with indices stored in Bt.
4: for each sampled task Ti do
5: Sample a size K support data batch Dt, in

i from S in
i ;

6: Sample a size b query data batch Dt, out
i from Sout

i ;
7: (Inner-level) Compute adapted parameters with gradient descent:
8: w′t

i := wt − α∇wt

(
L̂
(
wt,Dt, in

i

)
+ σinReg

(
wt,Dt, in

i

))
;

9: (Outer-level) SGD step for meta-model, save the per-task weight for meta-update:
10: wt+1

i := wt − βt∇wt

(
L̂
(
w′t

i,D
t, out
i

)
+ σoutReg

(
w′t

i,D
t, out
i

))
;

11: end for
12: Meta-update wt+1 := 1

r

∑
i∈Bt

wt+1
i

13: end for
14: Return: wT

The experiment setup for Omniglot and Mini-ImageNet follows [1]. Datasets. For the few-shot classification task, we
experiment on the Mini-Imagenet [10, 15] and Omniglot [8] datasets. The Mini-Imagenet [10] is sampled from ImageNet
with 600 instances of 100 classes. Each image is resized into 84 × 84. In the experiment, the Mini-Imagenet dataset is
split into 64 classes for training, 12 classes for validation, and 24 classes for testing. The Omniglot dataset is a collection of
1623 character classes with different alphabets. Each class in the dataset contains 20 instances. The classes are shuffled and
divided into the training, validation, and test sets, with 1150, 50, and 423 instances in the experiment. Models. We use the
classic 4-layer convolution backbone models [1, 4] in the experiments. Each convolution layer has conv-filters of 3 × 3 size
and is followed by batchnorm and max-pooling. For the Omniglot dataset, we use the backbone model with 64 filters in each
convotion layer (i.e., the backbone is 64-64-64-64 conv model). For the empirical verification experiment on Mini-ImageNet,
the 48-48-48-48 conv backbone model is adopted. And for the experiment that comparing Minimax-MAML and Minimax-
MAML++ with other baseline methods on Mini-ImageNet, we use the 64-64-64-64 conv backbone model to make a fairer
comparison with other methods. Training. All the MAML experiments take 5 inner-steps. In one experiment, the training
takes 150 epochs for 64-64-64-64 conv model and 120 epochs for 48-48-48-48 conv model, and each epoch consists of 500
iterations. The task batch size for all Omniglot experiments is 16. Mini-Imagenet experiments use task batch sizes of 4 and
2 for 1-shot and 5-shot experiments, respectively. After each epoch, the model’s performance is evaluated on the validation
set. When the training is complete, a prediction of the test set is made by the ensemble of the best 5 per-epoch-models on the
validation set (following [1], all the MAML-type methods’ results are generated under this paradigm). The Adam optimizer
is adopted for the model training, with a scheduled learning rate starting from 0.001, β1 = 0.9, and β2 = 0.99. Cross-entropy
loss is adopted as the loss function for all the models in the experiments.
Regularization:.

The pseudo-code for implementing MAML with inner/outer-level regularization in the experiment is shown in Algorithm
3. For the Few-shot image classification experiments, the MAML-type methods are sharing the same form of regularization
objective (except the first verification experiment isolating the L2-Norm regularizer). The regularization is achieved by com-
bining the L2-Norm regularization and output entropy regularization, i.e., the regularization term Reg(w,D) in Algorithm 3
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is given by

Reg(w,D) = −γentropyH(w,D) + γnorm
1

2
∥w∥2, (63)

where H(w,D) denotes information entropy of the output generated by model w for data batch D:

H(w,D) = −E(x,y)∈D

K∑
i=1

pw(y = i | x) log pw(y = i | x),

where K is the number of classes and pw(y = i|x) represents the probability of prediction to class i generated by model w.
Entropy represents the diversity of model output, and using negative entropy as a regularization objective can encourage the
model to make more conservative outputs and suppress overconfident outputs, thereby avoiding overfit. Entropy regulariza-
tion is also referred to as label-smooth sometimes. (Since entropy needs to be maximized in order to serve as a regularizer, it
is necessary to include a negative sign when incorporating it into the loss function.)

In order to explain entropy regularizer more specifically, we provide a PyTorch-based sample implementation here:

1 class Self_Entropy(torch.nn.Module):
2 def __init__(self, reduction = True):
3 super(Self_Entropy, self).__init__()
4 self.reduction = reduction
5

6 def forward(self, x):
7 b = F.softmax(x, dim=1) * F.log_softmax(x, dim=1)
8 if self.reduction:
9 b = -1.0 * b.mean()

10 else:
11 b = -1.0 * b.sum()
12 return b
13

14 self_entropy = Self_Entropy()

γentropy and γnorm in (63) are positive hyper-parameters controlling the regularization rate. We use γentropy = 2.0 and
γnorm = 5e− 4 for all of the few-shot classification experiments.

In Algorithm 3, the selectors σin and σout respectively determine the type of regularization for the inner-level and outer-
level. The values of σin and σout can be 1, 0 or -1, corresponding to ordinary regularization, non-regularization, and
inverted regularization respectively. For instance, in the empirical verification experiment that uses a combined regularizer,
to evaluate the effect of inverted inner-level regularization, we set {σin, σout} as {−1, 0}. Similarly, we set {σin, σout} as
{1, 0} to evaluate the effect of ordinary regularization at inner-level.

In terms of other regularization types, we have {σin, σout} = {0, 1} for regularize the outer-level, {σin, σout} = {1, 1}
for regularize the loss function (in the limited-tasks experiment), and {σin, σout} = {−1, 1} for minimax-meta regulariza-
tion. Since the original MAML doesn’t have any regularization, it is equivalent to having δin = 0 and δout = 0. (see Table 1
and 2 in the main paper.)

It is worth noting that we only add the inner-level inverted regularization during the training phase, and we do not use
it for the meta-testing phase. Specifically, during the meta-testing phase, which evaluates the performance of the learned
meta-model on new tasks, we only adapt the model without any additional regularization to avoid influencing its task-specific
performance.
Implementation.

The implementation of inner- and outer-level regularizations is simple and straightforward, and often involves only modifi-
cations to loss functions. Assuming that cross-entropy is used as the classification loss, and the combined regularization term
Reg(w,D) = −γentropyH(w,D) + γnorm 1

2∥w∥
2 is adopted, we provide a PyTorch implementation example of Minimax-

Meta Regularization to further explain the regularizations and demonstrate the simplicity of implementation.
During training, at the inner-level, the invertedly regularized loss L̂

(
wt,Dt, in

i

)
−Reg

(
wt,Dt, in

i

)
now can be expressed

by L̂
(
wt,Dt, in

i

)
− (−γentropyH(wt,Dt, in

i ) + γnorm 1
2∥w

t∥2), which could be implemented as:

1 # inner-loop training loss of MAML, with inverted regularization.
2 loss = F.cross_entropy(preds, y) - (- gamma_e * self_entropy(preds) + gamma_n * l2_norm(weights))
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where preds is the model’s prediction for the input data batch, y is the true label batch and weights stores the weight values
of the model.

Similarly, at the outer-level, the ordinarily regularized loss L̂
(
w′t

i,D
t, out
i

)
+ Reg

(
w′t

i,D
t, out
i

)
now can be expressed

by L̂
(
w′t

i,D
t, out
i

)
+ (−γentropyH(w′t

i,D
t, out
i ) + γnorm 1

2∥w
′t
i∥2), which could be implemented as:

1 # outer-loop training loss of MAML, with ordinary regularization.
2 loss = F.cross_entropy(preds, y) + (- gamma_e * self_entropy(preds) + gamma_n * l2_norm(weights))

Since the built-in norm/weight-decay methods in popular libraries usually do not support negative parameters, the l2 norm
function may require manual implementation, but it is also easy to accomplish.

When training is complete, during the testing phase, which evaluates the performance of the learned meta-model on new
tasks, we adapt the model to each new task without any additional regularization:

1 # meta-testing phase loss of MAML, without additional regularization
2 loss = F.cross_entropy(preds, y)

The aforementioned implementation example can be readily incorporated into the widely-used open-source MAML di-
rectory ”How to train your MAML in Pytorch” proposed in [1], which serves as the basis for our experimental setup.

B.2. Few-shot Regression

The experiment setting follows the few-shot regression experiment in [12]. Datasets One synthetic and three real-world
few-shot regression datasets are considered. The synthetic dataset is created by a 2-dimensional mixture of Cauchy distribu-
tions plus random GP functions. One real-world dataset is SwissFEL [9] which corresponds to Swiss Free Electron Laser’s
calibration sessions. Another two datasets are from the PhysioNet 2012 challenge [13], which contains time-series data
related to patients’ health metrics, in particular, the Glasgow Coma Scale (GCS) and the hematocrit value (HCT). Cauchy
contains 20 tasks, and each task consists of 20 samples. SwissFel contains 5 tasks, and each task consists of 200 samples.
Each Physionet dataset contains 100 tasks, and each task consists of 4∼ 24 samples. Models We use a fully-connected neural
network with 4 layers with each 32 neurons as the base-learner model, aligning with the base-learner structure adopted by
other baseline methods. ReLU is used as activation. MAML takes 3 inner steps in our experiment.

Regularization For regression problems, the output entropy used in the classification experiments cannot again be used
as the regularization objective. So we adopt L2-Norm as the only regularization objective. Let γ be the parameter control-
ling the magnitude and direction of the L2-Norm regularization, the inner-level regularization rate parameter γin is set to
negative (inverted regularization) and the outer-level regularization rate parameter γout is set to positive (ordinary regular-
ization). We use hyper-parameter search to select the value of parameters. Specifically, we use {γin, γout} = {−1e-3, 1e-
3}, {γin, γout} = {−1e-2, 1e-2}, {γin, γout} = {−5e-3, 5e-3}, and {γin, γout} = {−5e-2, 5e-2} for Cauchy, SwissFel,
Physionet-GCS, and Physionet-HCT experiment respectively. The number of iterations in each experiment is determined
using the validation set.

C. Supplementary Experimental Analysis
Due to the space limitation of the main paper, we provide supplementary experimental results in this section, including an

additional experiment on Mini-ImageNet few-shot classification with limited tasks, an additional experiment on Meta-dataset
with the first-order method and larger backbone, and an additional experiment on meta-reweighting with Minimax-Meta
Regularization for robust learning.

C.1. Mini-ImageNet Few-shot Classification with Limited Tasks

To further illustrate the generalization ability of Meta-Minimax regularization, we conduct an experiment to compare it
with other common regularization strategies on meta-learning with the limited number of training tasks. The fewer the task
number is, the easier the meta-model would overfit.

In the implementation of N-way few-shot classification experiments, in the training phase, each task is sampled by com-
bining N training classes as one N-way classification task. That is, for a dataset with M training classes available, there would
be accordingly

(
M
N

)
training tasks available. So we could restrict the number of training tasks by restricting the number of

training classes.
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Figure 1. Test accuracies (%) with varying training classes number. The shaded region denotes the 95% confidence interval.

We take Mini-ImageNet 5-way 1-shot as the experiment scenario. The experiment setting follows the same setting of
Mini-ImageNet empirical verification experiments. In the original experiment, there are 64 classes available for training. We
restrict the number of training classes to 48/32/16/8/5 in this limited classes experiment. And Meta-Minimax regularization
is compared with original MAML and MAML with common regularization: MAML w/ outer-loop regularization, MAML w/
loss function regularization (MAML w/ loss function regularization means simply adding ordinary reg term in loss function
at both inner- and outer-level during the training). We also implemented TAML(Entropy+MAML) proposed by [7] for
comparison.

Figure 1 shows the accuracy curve of experiment results with the varying number of training classes. The result suggests
Meta-Minimax regularization continuously outperforms other methods under the limited task number scenario and improves
the accuracy to a certain margin even under a very small task number.

C.2. Meta-Dataset Few-shot Classification Experiment

To test the effectiveness of Minimax-Regularization on larger backbones and to validate if it is fitful for first-order meta-
learning methods, We further conduct an experiment using first-order MAML (fo-MAML) and ResNet-12 backbone on
Meta-Dataset [14]. Meta-Dataset creates a dataset of datasets benchmark for meta-learning. In our experiment, we only train
the model on the ILSVRC training set and test on the ILSVRC testing test and other 8 datasets (Omniglot, Aircraft, Birds,
Textures, QuickDraw, VGG Flower, Traffic, MSCOCO). The experiment settings follow the benchmark proposed in [14], and
we use the open PyTorch repository provided by [2] to build the experiment. We implement Minimax-Meta Regularization
for fo-MAML to compare it with the original version.

Each model takes 6 inner-loop steps in the training phase, and additional 5 inner-loop steps are adopted for the testing
phase. The inner stepsize is set to 0.3 for each model. Adam optimizer is adopted for the meta-model updating with a learning
rate of 0.00025. Each model completed 10000 training updates. We repeat the experiment for 3 independent runs and report
the mean accuracies and 95% confidence intervals.

Like in the Mini-ImageNet and Omniglot experiments, we adopt the entropy & L2-Norm combined regularization term to
achieve the Minimax-Meta Regularization. We use γentropy = 2.0 and γnorm = 3e-5 as the reg magnitude coefficients for
both inner- and outer-level regularizations.

Table 6 shows the experiment results. The results suggest that the Minimax-fo-MAML generalizes better on all 9 testing
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datasets.

C.3. Meta-reweighting with Minimax Regularization for Robust Learning

To verify the general effectiveness of our proposed methods, we further conduct experiments on the meta-learning problem
of meta-reweighting for robust learning.

C.3.1 Experimental Setup

For this experiment, we evaluate the performance of our proposed method and baselines on a robust-learning task: the noisy
MNIST dataset. The dataset is created by randomly flipping the labels of 40% of the training images, resulting in 10000
training images with 40% incorrectly labeled data. Each image has a dimension of 28x28, and the task is to classify them
into ten handwritten digits (0 ∼ 9). There is also a clean validation set consisting of 100 correctly labeled images with
balanced categories available for helping the training process on the noisy set.

Algorithm 4 Minimax Meta-Reweighting.

Require: model θ0, noisy training set Df , clean validation set Dg , training batch size n, validation batch size m, inner-level
regularization parameter γin,outer-level regularization parameter γout

Ensure: θT
1: for t = 0 to T − 1 do
2: Sample a n-size mini-Batch data {Xf , yf} from Df ;
3: Sample a m-size mini-Batch data {Xg, yg} from Dg ;
4: Forward Xf using model θt, get predicted labels ŷf ;
5: Set temporary example weights to zero: ϵ = 0 ;
6: Calculate weighted loss on noisy data batch: lf =

∑n
i=1 ϵiC (yf,i, ŷf,i);

7: Calculate θ̂t = θt − α∇θt lf ;
8: Forward Xg using model θ̂t, get predicted labels ŷg;
9: Evaluate loss on clean data batch, with inverted entropy reg:

10: lg = 1
m

∑m
i=1

(
C (yg,i, ŷg,i) + γinEntropy(ŷg,i)

)
;

11: Calculate new example weights w̃ = max(−∇ϵlg, 0), and normalize w = w̃∑
j w̃+δ(

∑
j w̃)

;

12: Calculate new weighted loss on noisy data batch, with ordinary entropy reg:
13: l̂f =

∑n
i=1 wi (C (yf,i, ŷf,i)− γoutEntropy(ŷf,i));

14: θt+1 ← OptimizerStep
(
θt,∇θt l̂f

)
;

15: end for

The basic robust-learning baseline we evaluate here is Meta-Reweighting introduced in [11]. The Meta-Reweighitng algo-
rithm learns to assign weights to training examples for robust learning. To determine the example weights, Meta-Reweighting
performs a meta gradient descent step on the mini-batch example weights (which are initialized from zero) to minimize the
loss on a clean, unbiased validation set.

Our method adds the Minimax-Meta Regularization on top of Meta-Reweighting. We add ordinary regularization at the
outer-level, where the optimal weights are adopted for meta-update. And inverted regularization is added at the inner-level,
where the weighted inner-model fits the clean unbiased validation set for optimal weight calculation. Intuitively, through the
meta-weighted learning process, such a regularization method makes the model become more conservative when updating
based on the noisy training data in the outer loop and values the diversity of predictions more, thereby resisting overfit.

Table 6. Few-shot classification results on Meta-Dataset using models trained on ILSVRC. Backbone: ResNet-12
Datasets except ILSVRC are only used for testing, and we report the test accuracy with a 95% confidence interval. Each model completed
10000 training updates.

Method ILSVRC (test) Omniglot Aircraft Birds Textures QuickDraw VGG Flower Traffic MSCOCO
fo-MAML 38.24±2.30 44.75±6.26 28.06±2.43 37.64±3.56 39.41±4.50 42.57±3.79 58.55±5.20 36.62±2.85 42.38±5.09
Minimax-fo-
MAML(ours) 40.53±1.54 68.43±3.53 30.95±2.97 41.09±0.40 45.12±1.41 51.57±2.68 66.23±0.89 38.83±2.71 45.15±0.85
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Figure 2. Training accuracy curve. Since 40% of training samples are incorrectly labeled, the model keeps a training accuracy of around
60% would be considered resistant to overfitting during the training.

Figure 3. Test accuracy curve. Since the test dataset is clean, the model that can maintain a higher test accuracy is considered with better
learning robustness (less affected by the noise in the training set).

At the same time, the inner model was encouraged to make sharper predictions on the clean validation set by the inverted
regularization.

The regularization objective used in our method is maximizing output entropy (minimizing output entropy at the inner-
level). We call our method Minimax Meta-Reweighting. The pseudo-code for implementation is shown in Algorithm 4. In
our experiment, we use a γin = 0.25 and γout = 2.0.

For each method in the experiment, we use the LeNet-5 as the backbone model and train the model for 1000 epochs. The
learning rates for the first 1/3, the middle 1/3, and the last 1/3 training epochs are set to 1e-2, 1e-3, and 1e-4, respectively.

C.3.2 Results and Analysis

Under this setting, models are extremely prone to overfit the noisy dataset during the training phase. To understand the
models’ performance, we could look at the training and testing curves in Figure 2 and 3. Since the training set is noisy,
models overfitted to the train set would show significant performance deduction on the clean test set.

From the perspective of robust learning, the direct training method sets the lower performance bound to some extent.
Since it does not have any denoising ability, it quickly overfits the training set during the training. It reaches peak accuracy
on the clean test set around the 80th epoch, and starts to overfit after that. We could identify the overfitting characteristic
from the training and testing accuracy curve. Since 40% of the labels in the training set are incorrect, once the model starts
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to predict the training data with an accuracy larger than 60%, it fits the distribution of the noisy training data instead of the
ground truth distribution. At the same time, the performance deduction on the clean test set would also start. Finally, we
could observe the training accuracy and testing accuracy of the directly trained model to converge to nearly 100% and 60%,
respectively, which indicates a complete overfit. On the contrary, the model with optimal learning robustness should not
overfit the train set, keep a train accuracy value close to 60% and maintain the optimal performance on the clean test set.

Compared to direct training, the training curve of Meta-Reweighting baseline [11] shows a significant improvement in the
learning robustness. However, it still suffers from overfitting. It neither completely overfits the training dataset nor ignores
all the noises; its training accuracy converges to around 70%. After around the 100th epoch, the Meta-Reweighting model
experienced continual test accuracy deduction and finally maintained test accuracy at around 87.5%.

Minimax-Reweighting nearly reached the optimal learning robustness under this setting. The training accuracy of Minimax-
Reweighting stuck at around 60% with rarely any change throughout the training phase. And the testing accuracy maintained
a peak value of around 95.5% without observable deduction.

To further evaluate the effectiveness of Minimax-Reweighting, we implemented the outer-loop-only regularization on top
of the Meta-Reweighting algorithm to make comparisons. While this approach did show improvement from the baseline
method, it was unable to achieve the same level of performance as Minimax-Meta Regularization, as shown in Figure 2 and
3.
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