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Figure 1. Overview for the training of ReRF.

A. Training details for Neural Residual Field.

Here we provide a detailed illustration of the training

scheme to generate ReRF from RGB video inputs, as shown

in Fig. 1. Specifically, we construct an explicit feature grid

for the first frame. Then, sequentially given the former fea-

ture grid ft−1 and the RGB images at the current timestamp,

we optimize our motion grid Mt and residual grid rt for

the current frame to generate our compact neural represen-

tation.

A.1. Feature Grid Optimization at the First Frame.

Given a long-duration multi-view sequence, we first

learn an explicit feature grid and a global MLP Φ from the

first frame. Similar to DVGO [19], we use an explicit den-

sity grid Vσ and a color feature grid Vc to represent the first

frame. To render a view, we will cast rays through the pix-

els and sample points along rays. For the sampled point p,

we will query the scene property (density and color feature)

efficiently through trilinear interpolation from the grids:

Tri-Interp (p = [x, y, z],Vσ) :
(
R

3,RNx×Ny×Nz
) → R,

Tri-Interp (p = [x, y, z],Vc) :
(
R

3,RC×Nx×Ny×Nz
) → R

C ,
(1)

where C is the number of color feature dimension, Nx, Ny

and Nz are the voxel resolutions of Vσ and Vc. We choose

C = 12 in our experiments. Following DVGO, we adopt
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the softplus and post-activation to obtain the density prop-

erty of the sample points and apply the global MLP Φ to

the color feature for the view-dependent rendering. This

shallow MLP contains two hidden layers and each layer is

128 channels. During the training, we progressive upscale

our density grid Vσ and color feature grid Vc. The ini-

tial number of voxels is 125 × 125 × 125. After reaching

the training step 1000, 2000 and 4000, the final resolution

will be upscaled to 150× 150× 150, 200× 200× 200 and

250× 250× 250, respestively.

During training this explicit feature grid, we employ the

photometric MSE loss and apply total variation loss on Vσ:

Lrenderexplicit
=

∑
l∈L

‖c(l)− ĉ(l)‖,

LTVexplicit
=

1

|Vσ|
∑

v∈Vσ

√
Δ2

xv +Δ2
yv +Δ2

zv,

Lexplicit = Lrenderexplicit
+ λTVLTVexplicit

, (2)

where λTV = 0.000016; L is the set of training pixel

rays; c(l) and ĉ(l) are the ground truth color and predicted

color of a ray l respectively. Δ2
x,y,zv denotes the squared

difference between the density value in the voxel. The total

variation loss is only activated during the training iteration

1000 to 12000. We utilize the Adam optimizer for training

5000 iterations in the coarse stage and 16000 iterations in

the fine stage with a batch size of 10192 rays. The learning

rate for Vσ , Vc and global MLP is 0.1, 0.11 and 0.002,

respectively.

A.2. Motion Grid Optimization.

Here we provide details to generate our compact low-

resolution motion grid Mt, which represents the position

offset from the current frame to the previous so as to ex-

ploit feature similarities. We propose to generate Mt from

a densely estimated motion field Dt, which is a grid with

a shape of 3 × Nx × Ny × Nz and contains the warping

information from the frame t to frame t− 1.
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For our dense motion field estimation, we first sample

point pt along the pixel ray of frame t. Then the sampled

point pt will query the 3D motion Δpt→t−1 = Dt(pt)
through trilinear interpolation:

Tri-Interp (pt = [x, y, z],Dt) :
(
R

3,R3×Nx×Ny×Nz
) → R

3.
(3)

After finding the corresponding point pt−1 = pt +
Δpt→t−1, we can get the feature from the previous fea-

ture grid ft−1 for pt. Then, the global MLP Φ will decode

color feature to RGB space. Finally, the pixel color can be

calculated through volume rendering.

During this estimation, we also progressively upscale the

deformation field Dt from (125 × 125 × 125) → (150 ×
150 × 150) → (200 × 200 × 200) → (250 × 250 × 250)
after reaching the training step 1000, 2000 and 4000, re-

spectively. We adopt the following photometric MSE loss

and total variation loss to estimate Dt:

Lrenderdeform
=

∑
l∈L

‖c(l)− ĉ(l)‖,

LTVdeform
=

1

|Dt|
∑
v∈Dt

√
Δ2

x(v, d) + Δ2
y(v, d) + Δ2

z(v, d),

Ldeform = Lrenderdeform
+ λTVLTVdeform

, (4)

where the total variation loss enforces the smoothness of

the dense motion field, and λTV is set to be 1. We use the

Adam optimizer for training 3000 iterations in the coarse

stage and 16000 iterations in the fine stage, with a batch

size of 10192 rays and a learning rate of 10−4.

Then, we generate the smooth and compact motion grid

Mt from Dt through a motion pooling strategy as described

in the main manuscript.

A.3. Residual Grid Optimization.

Here we provide implementation details to generate the

sparse residual grid rt of the current frame, which is used to

compensate for warping errors and newly observed regions.

Specifically, we first warp the previous frame feature ft−1

using the compact motion field Mt to generate a base fea-

ture grid f̂t. Then, during the optimization, we shoot rays

from the image pixels and sample points pt along it. The

base feature grid and residual grid are both queried through

trilinear interpolation to obtain f̂t(pt) and rt(pt):

Tri-Interp (pt = [x, y, z], f̂t) :
(
R

3,RC×Nx×Ny×Nz
) → R

C ,

Tri-Interp (pt = [x, y, z], rt) :
(
R

3,RC×Nx×Ny×Nz
) → R

C .
(5)

Note that C = 13, since we union the density and color

feature in our feature grid f representation. We obtain the

final scene property of the current frame through the sum-

mation: ft(pt) = f̂t(pt) + rt(pt). Finally, the global MLP

Φ will decode it into radiance fields with volume rendering

to calculate pixel color.

We employ the same progressive training scheme for

the residual grid, starting from (125 × 125 × 125) →
(150×150×150) → (200×200×200) → (250×250×250)
after reaching the training step 1000, 2000 and 4000, re-

spectively. Besides the photo-metric MSE loss and total

variation loss on density residual, we utilize an additional

L1 loss to encourage the residual sparsity:

Lrenderresidual
=

∑
l∈L

‖c(l)− ĉ(l)‖,

LTVresidual
=

1

|fdt |
∑
v∈fdt

√
Δ2

xv +Δ2
yv +Δ2

zv,

L1residual =
1

|rt|
∑
v∈rt

(|vx|+ |vy|+ |vz|),

Lresidual = Lrenderresidual
+λTVLTVresidual

+λresidual ·L1residual,
(6)

where fdt represents the density of feature grid ft; λTV =
0.000016 and λresidual = 0.01.

Similar to our first frame explicit grid optimization, the

total variation loss of density residual is only activated dur-

ing the training iteration 1000 to 12000. We adopt the Adam

optimizer for training 5000 iterations in the coarse stage and

16000 iterations in the fine stage with a batch size of 10192

rays. The learning rate for the density of residual grid rt,

and the color feature of residual grid rt is 0.1, 0.11, respec-

tively. Note that the base feature grid f̂t is fixed and we ini-

tialize the residual grid with zero value during our residual

grid optimization.

B. ReRF Codec and Streamble Application

In the past decades, a number of image and video

compression standards like JPEG [22], JPEG2000 [21],

H.264/AVC [23] and H.265/HEVC [18] have been proposed

and widely used in many practical applications. Most of

these video compression methods follow a hybrid coding

structure, where motion compensation and residual coding

are adopted to reduce spatial and temporal redundancy. Re-

cent work has also attempted to employ neural networks

for video compression and has shown considerable perfor-

mance [3, 4, 8, 9, 13, 14]. Inspired by these compression

methods, we propose a ReRF-based codec and a companion

FVV player for online streaming of long-duration dynamic

scenes, while still guaranteeing an immersive exploration

experience over existing networks. Fig. 2 demonstrates the

overall pipeline of our framework.
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Figure 2. Overview of our proposed ReRF-based codec and player

(the modeling elements of the encoder and decoder are shaded in

light green and pink, respectively). The encoder compresses the

input signal to produce a bitstream by using PCA, 3D-DCT, quan-

tization, and entropy coding. The decoder receives the compressed

bitstream, decodes each of the syntax elements, and reverses the

coding process. Additionally, given the decoded motion field Mt

and the previously reconstructed feature grid ˜ft−1, we can obtain

the predicted feature grid f t by deformation.

B.1. Feature-level Residual Compression.

Both motion and residual grids are amenable to com-

pression, especially for long-duration dynamic scenes. To

make ReRF practical for users, we design a ReRF-based

codec that follows the traditional keyframe-based strategy.

We first divide the feature grid sequence into several con-

tinuous groups of feature grids (GOF), which is a collec-

tion of successive grids as shown in Fig 3. GOFs are com-

prised of two frame types, the I-feature grid (keyframe) and

the P-feature grid. Each GOF begins with an I-feature grid

which is coded independently of all other feature grids and

contains most of the vital information for the following se-

quence of the P-feature grid. The p-feature grid contains

a deformable compensated residual grid relative to the pre-

vious feature grid. Let {f1, r2, · · · , rt−1, rt, · · · } denote a

GOF, where f1 is the original feature grid and rt is the resid-

ual grid at the current time step. Our goal is to generate high

quality reconstructed feature grid f̃t at any given bitrate.

PCA. We first reshape f1 and rt into f1(m,n) and

rt(m,n), a m × n feature matrix, where m and n are the

number of non-empty feature voxels and feature channels,

respectively. Then, we perform linear Principal Component

Analysis (PCA) [6] on rt(m,n) to obtain the named-tuple

(U,S,V) which is the nearly optimal approximation of a

singular value decomposition of rt(m,n):

rt(m,n) = U · diag(S) ·VT , (7)

where V is the n × q matrix, representing the principal di-

rections, S is the q-vector, U is the m × q matrix. Finally,

I P P P I P P

... ...

The first GOF, length=20 The next GOF, length=20

time

Figure 3. GOF structure.

we project the rt to principal directions as follows:

r′t = rt ·V. (8)

3D DCT. Each channel of grid f1 and r′t is divided into

cubes of 8× 8× 8 voxels and each cube is separately trans-

formed by using a 3D DCT [1, 11]. Let residual voxels

for each cube are denoted by r(i, j, k), and the DCT co-

efficients R(u, v, w) can be calculated as:

R(u, v, w) =CuCvCw

N−1∑
i=0

N−1∑
j=0

N−1∑
k=0

r(i, j, k) cos [
(2i+ 1)π

2N
u]

cos [
(2j + 1)π

2N
v] cos [

(2k + 1)π

2N
w]

where Cu, Cv, Cw =

⎧⎪⎪⎨
⎪⎪⎩

√
1

N
i, j, k = 0√

2

N
otherwise.

(9)

The transformed value at the coordinate origin R(0, 0, 0)
is the DC coefficient which is the most important value of

the transformed coefficients. The amplitude of the DC co-

efficient is larger and contains more energy. While the rest

coefficients are the AC coefficients, they contain little en-

ergy in the whole 3D-DCT, and most of their energy is con-

centrated on the major axis of the cube.

Quantization. Thereafter, the transform coefficients are

quantized using a quantization matrix. The quantization

matrix for a coefficient cube should have an entry for each

coefficient. The values in the quantization matrix depend

on if the corresponding coefficients are significant and also

on the underlying quality factor being adopted. We perform

scalar quantization on the 3D DCT coefficients. Each quan-

tized transform coefficient is given by

R̂(u, v, w) = round(
R(u, v, w)

Sq ×Q(u, v, w)
). (10)

where Sq is a scaling factor and Q(u, v, w) is a quantization

matrix entry. In this work, we construct a quantization ma-

trix based on psycho-visual experiments. The values of the

quantization matrix are provided in quant.npy in the supple-

mentary material.

Entropy Coding. The quantized transform coefficients

are entropy coded and transmitted together with auxiliary



information such as motion field Mt, frame type, etc. En-

tropy coding involves arranging the quantized DCT coeffi-

cients in a “3D zigzag” order [11], employing a run-length

encoding (RLE) algorithm to group similar frequencies to-

gether, inserting length coding zeros, and then using Huff-

man coding [22, 24] for the remainder. The DC coefficients

are coded separately from AC ones [22]. Specifically, the

DC coefficients are coded using the Differential Pulse Code

Modulation (DPCM) method [22]: except for the first DC

coefficient, we encode the difference between the current

DC coefficient and the previous DC coefficient. The AC

coefficients are coded using the RLC method. To make it

most likely hit a long run of zeros, a “3D zig-zag” scan is

adopted. Finally, we use Huffman coding to further com-

press the DPCM-coded DC coefficients and the RLE-coded

AC coefficients.

The experimental results show that our ReRF-based

codec achieves three orders of magnitudes compression rate

compared to per-frame-based neural representations [19].

Another advantage of our compression method is the abil-

ity to achieve variable bitrates via adjusting the scaling fac-

tor Sq during quantization, thus enabling dynamic adaptive

streaming of ReRF according to the available bandwidth.

B.2. Network Streaming ReRF Player

We also implement a companion ReRF player for online

streaming dynamic radiance fields of long sequences, with

broad control functions. Our ReRF player supports down-

loading the coded bitstream from streaming media servers.

When the bitstream is received, the I-feature grid f̃1 is first

reconstructed by performing inverse quantization and in-

verse transform on the quantized transform coefficients.

After the I-feature grid is reconstructed, the subsequently

received P-feature grid will then be reconstructed. Specif-

ically, the initial reconstructed residual grid r̂′t is generated

by inverse quantization and inverse transform of the quan-

tized transform coefficients. Then r̂′t is back-projected to

the origin space by

r̂t = r̂′t ·VT . (11)

Additionally, given the decoded motion field Mt and the

previously reconstructed feature grid f̃t−1, we can obtain

the predicted feature grid f t by deformation. Let p denote

the index of our explicit grids. Then, the predicted feature

grid is formulated as:

f t(p) = f̃t−1(p+Mt(p)). (12)

The predicted feature grid f t as well as the initial re-

constructed residual grid r̂t are added to produce the final

reconstructed feature grid f̃t, as follows:

f̃t = f t + r̂t. (13)

Figure 4. Our rendering results for forward facing scenes in neural

3D dataset.

Finally, the reconstructed feature grid f̃t is output to

the renderer to generate photo-realistic FVV of dynamic

scenes. As our ReRF player can efficiently reconstruct and

render dynamic scenes, users are free to choose their views

as if they were in the target scene.

Benefiting from the design of the GOF structure, our

ReRF player allows fast seeking to a new position to play

during playback. The reason is that the coded bitstream

consists of successive GOFs. The first frame in a GOF

is an I-feature grid (keyframe) which contains an indepen-

dently coded feature. Encountering a new GOF in a com-

pressed bitstream means that the decoder can decode a com-

pressed feature grid without reconstructing any previous

feature grid. With ReRF player, for the first time, users

can pause, play, fast forward/backward, and seek dynamic

radiance fields just like viewing a 2D video, bringing an

unprecedented high-quality free-viewpoint viewing experi-

ence.

Note that the I-feature grid (keyframe) is different from

the explicit feature grid for the first frame. We only use ex-

plicit feature grid to representation in the first frame train-

ing. All other sequential frame features are trained using

residual grid rt and can be generated to feature grid ft. GOF

structure is used to enable fast seeking. It will choose key

frame every GOF size. For I-feature grid, the full feature

grid ft is encoded (generated from residual grid) . For P-

feature grid, the residual grid rt is encoded.

C. Experiments
C.1. Dataset Details

Our captured dynamic datasets contain around 74 views

at the resolution of 1920×1080 at 25fps. The cameras are

the cylindrical distribution looking at the center. Most se-

quences are more than 1000 frames, The longest sequence

contains 4000 frames. We use five real-world captured data

and two synthetic data for experiments.



Synthetic-NeRF TanksTemples

Method Size↓ PSNR↑ SSIM↑ PSNR↑ SSIM↑
SRN [17] - 22.26 0.846 24.10 0.847

NeRF [15] 5.0 31.01 0.947 25.78 0.864

NSVF [12] - 31.75 0.953 28.48 0.901

SNeRG [7] 1771.5 30.38 0.950 - -

POctrees [25] 1976.3 31.71 - 27.99 0.917

Plenoxels [5] 778.1 31.71 - 27.43 0.906

DVGO [19] 612.1 31.95 0.975 28.41 0.911

TRF-CP [2] 3.9 31.56 0.949 27.59 0.897

TRF-VM [2] 71.8 33.14 0.963 28.56 0.920

INGP [16] 63.3 33.18 - - -

CC-CP [20] 4.4 30.55 0.935 27.01 0.878

CC-HY [20] 88.0 32.37 0.955 28.08 0.913

Ours (high) 3.21 31.81 0.955 28.30 0.910

Ours (low) 0.98 30.14 0.941 27.16 0.893

Table 1. Comparison with recent methods on static scenes. We

compare our method with previous and concurrent novel view syn-

thesis methods on two datasets. All scores of the baseline meth-

ods are directly taken from their papers whenever available. Our

method use minimal storage while maintaining a high PSNR.

Figure 5. Quantitative results on Synthetic NeRF Dataset.

C.2. Additional Experimental Results

Static Scene Comparison. To demonstrate our I-feature

grid (keyframe) compression performance, we also com-

pare it with the existing static scene novel view synthe-

sis approaches on the Synthetic NeRF dataset [15] and

TanksTemples dataset [10] in Tab. 1. Compared to the

original DVGO, orders of magnitudes smaller bitrates are

achieved, without significantly sacrificing quality. We

choose 2 different quantization factors to show our high-

quality compression and low-quality compression results.

Note that our high quality version has achieved the most

compact modeling with essentially the same rendering qual-

ity as the original DVGO and also outperforms vanilla

NeRF and many other methods. Our low-quality version

also demonstrates that we can use a much more compact

storage (<1MB) to reach a high PSNR(>30).

Fig. 5 and 6 further show that our method is the

most compact and maintains a high render quality on

Figure 6. Qualitative comparisons with several recent works.

Figure 7. Performance on the long sequences (3000 frames).

static scenes in comparison with previous and concurrent

methods. Seven different quantization scaling factors are

adopted to achieve variable bitrates. Our methods also si-

multaneously achieve fast reconstruction and rendering.
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