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In this supplement, we show the details and additional
experiment results that are not presented in the main paper
due to the page limitation

A. Experimental Implementation Details
Dataset: Various fine-grained vision datasets are used:

CUB [22], Fungi [16], Butterflies [11] and Gulls [19].
In [16], CUB [22] with 200 bird species is re-organized
for Semi-supervised Learning (SSL). The labeled training
set has 500 examples from 100 classes (5 examples per
class). The unlabeled set has 3, 885 in-class examples 1

and 5903 out-class examples by considering the remaining
100 classes of CUB as novel. Fungi has 200 classes, con-
sisting of 4, 141 labelled and 13, 166 in-class and 64, 871
out-class unlabeled images which has 1, 193 novel classes2.
This dataset is more difficult because of its long-tailed prop-
erty. Butterflies and Gulls are two datasets of small class
cardinality, with only 5 classes, and 300 (150) labeled im-
ages, 1, 244 (431) unlabeled images for Butterflies (Gulls).
Our results are based on the test sets of [16, 19] with thrice
repeated experiments. Both datasets were subject to stan-
dard normalizations. Training images were first randomly
resized to 224 × 224 and then randomly flipped, whereas
testing images were first resized to 256 × 256 and then
center-cropped to 224 × 224. All images were also first
converted to [0.0, 1.0] from [0, 255] and then normalized
by subtracting the mean [0.485, 0.456, 0.406] and dividing
by the standard deviation [0.229, 0.224, 0.225] of each RGB
color channel.

Network: For fair comparison with [16, 19], we use
ResNet-18 on Butterflies and Gulls, and ResNet-50 on CUB
and Fungi if not otherwise stated. The models are pre-
trained on ImageNet [2], except for Butterflies where train-
ing is from scratch. This follows the setting of [17, 19] be-

1This number is from the data released on project link https://
github.com/cvl-umass/ssl-evaluation, which is slightly
different from the paper (3, 853)

2This number is different from 1194 on the project page of https:
//github.com/cvl-umass/ssl-evaluation, because the class
‘Inocybe rimosa’ is repetitively indexed and we fixed this problem.

cause two of the butterfly categories are in ImageNet. We
used the training setups of [16] on CUB and Fungi3 and [19]
on Butterflies and Gulls4. The deliberative explanations
and compared Grad-CAM are generated using [14, 18]. We
tuned the threshold on the heat map such that 5% image
size is remained for visualization, which follows the setting
of [18–20].

Crowd-sourcing: Amazon Mechanical Turk is used5.
The interface is given in Figure 2 of the paper. The per
image reward is $0.01 across all our experiments. We did
not limit the maximum number that per turker can work on.
Statistically, each worker completed 21.1 query image an-
notation tasks on average and the maximum is 135.

In our budget-aware experiments, the cost of an expert is
harder to determine and can vary significantly with the ap-
plication area, e.g. doctors tend to be more expensive than
botanists. We tried to identify a lower bound for the cost,
in a domain of mild expertise. For this, we asked MTurkers
to take a survey, declaring if they were specialists on birds
or fungi. To answer the survey, they were shown 3 images
of birds or fungi. Those who felt confident about their abil-
ity to do the classification, were then asked the expected
per image reward, for labeling images from 100 candidate
classes. Four options were given: < $0.1, $0.1 − $0.5,
$0.5− $1.0, and > $1. We gathered 5 results for birds and
3 for fungus. One person chose $0.5 − $1.0 and all others
chose > $1, showing that the task is considered difficult.
We thus use $1 as cost estimate for expert labeling. This
can be thought as a lower bound, although it is unrealisti-
cally low for many image domains.

B. Support Set Ablations

Sample choice of the positive support sets We consider
four strategies to select the examples of support set Sŷ ⊂
Dl

ŷ , based on the predicted posterior probability fŷ(x) of
class ŷ given example x. Strategy S1 is to choose the

3https://github.com/cvl-umass/ssl-evaluation
4https://github.com/peiwang062/MEMORABLE
5https://www.mturk.com/



Lab. Acc. Cla. Acc.
Softmax 68.7 65.9
Softmax+attributive 71.4 67.1
Softmax+deliberative 74.3 68.6

Table A. Ablation study for support sets.
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Figure A. Result comparison of dif-
ferent support set sample choices.
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Figure B. Result comparison of dif-
ferent support set sizes.

examples of K highest probabilities fŷ(x) (‘Softmax-HP-
P’). These are the easiest to assign to class ŷ and include
the most representative class features. Strategy S2 is to
choose examples with the K lowest top-probability fŷ(x)
(‘Softmax-LP-P’). These are harder and more likely to be
outliers for class ŷ, including features that are rarely visi-
ble, occlusions, or other variations. Strategy S3 is to select
a set of examples with diverse probability fŷ(x) (‘Softmax-
DP-P’). This means the selected examples have more di-
verse features. Finally, Strategy S4 is to select the examples
randomly (‘Softmax’), which is used as baseline. Figure A
compares the results. As we mentioned in the paper, we
have found no big difference between these strategies and
just used randomly selection.
Sample choice of the negative support sets For Scŷ , simi-
larly to Sŷ , we experimented with the highest-probability
(‘Softmax-HP-N’), lowest top-probability (‘Softmax-LP-
N’), and random example, again finding that these strategies
make no big difference. Figure A shows the results as well.
The size of support sets The support set size K is ablated
from 1 to 4. Figures B shows that with just one image both
annotation and classification accuracies are weak. Both ac-
curacies improve for larger K saturating at about K = 3.
This likely reflects the fact that too many images can be dis-
tracting or even confusing.
Explanations We investigate the importance of explana-
tions, comparing attributive explanations based on Grad-
CAM [14], (‘w Grad-CAM’)6 and the proposed deliberative
explanations (‘w deliberative’), with results on Table A. The
baseline ‘Softmax’ is the setting only having the support set
but no explanations, corresponding to the D in Table 1 of
the paper. Overall, although Grad-CAM enables a clear im-
provement, the proposed deliberative explanations have the
largest benefit.

6On Grad-CAM experiments, a slightly different description for cir-
cled regions for turkers is given, “The circle regions may have some class-
specific features, which might be helpful for your identification.”
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Figure C. The trade-off comparison of supervised/SSL/SSL-HF.

C. Comparison to Other Implementations of
SSL-HF

We also experimented on other two different settings of
SSL-HF. (1) SSL-HF∗ where three annotations are collected
per image and majority voting is used to decide on the final
label. (2) SSL-HF† where the “agree” examples are recy-
clable and with replacement like SSL methods [8, 15], i.e.,
in Algorithm 1, eliminating step 14 and 15 and the classi-
fier is updated by f t ← argminf RDl∪Lt(f). The budget-
aware results are compared in Figure C. Obviously, they
are inferior to the original SSL-HF because repetitive an-
notations lead to great cost increase even if there are some
slightly accuracy improvements.

D. Comparison to Crowd Source Methods
As discussed in the related work section, SSL-HF is

partly inspired by Tropel [13] which was proposed for bi-
nary detection. Following the setup of [12], we compare to
Tropel and Mullapudi et al [12] in Figure D. Here, since
the source code and experimental details of [12] are not
available online, it is difficult to reprodcue their results. Be-
cause the results in [12] are reported graphically, we do not
have the original data even we have tried to reach out to
the authors, but did not get the response. We are unable
to compare the result on the same figure and have to attach
the screenshotted Figure 3(a) of [12] lower to our result for
reference. We are not to make any conclusion because the
comparison might be unfair because of some of implemen-
tation details of [12] are unknown.

E. Enhancement by Other Techniques
Since SSL-HF is a general solution for SSL problem, it is

versatile to a variety of machine learning techniques. In this
section, we take some of them as an example to investigate
if SSL-HF can benefit from them. The results are summa-
rized in Table B. The benchmark of Table 2 of the paper is
used.
Confidence calibration Because the unlabeled samples are
added progressively based on their confidence estimation in
Algorithm 1, to calibrate the confidence is important and
potentially able to lead to better performance. Temperature
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Figure D. F1 score comparison to state of the arts crowd source methods.
The bottom figure is a screenshot from [12] because source codes and im-
plementation details are not available. Because of a screenshot, ’Ours’
refers to [12].

scaling [4] is adopt to validate this idea. The temperature of
softmax is tuned to be an optimal value of 1.2. We found
there is a stable improvement.
Architecture SSL-HF can also benefit from more advanced
architectures. Vision transformer (ViT) ‘vit b 16’ from [3]
is used as an example. The supervised baseline of training
only on the expert-labeled set is 82.4(0.3). When training
with additional unlabeled examples, SSL-HF can still result
in a significant improvement, 3.3% on CUB.
Noisy labeling training Since the pseudo-labels are noisy,
further performance improvements can in principle be ac-
crued by training with noisy label learning algorithms [1, 9,
21]. However, as shown in the table, things went contrary
to our wishes. This is opposite to the observation in [19]
where noisy labeling training is found to able to enhance the
classifier performance trained on the machine teaching an-
notated labels. We think there might be two reasons. First,
on [19], the datasets, Butterflies and Gulls, are relatively
easier in the sense that only five classes exist. These algo-
rithms are easily to fit the noisy labels, but not true on more
complicated datasets. Second, there is a gap of noise mode.
On [19], the noisy labels are entirely provided by humans.
This matches the evaluation metrics in the literature where
noise is generated by randomly replacing the ground truth
labels with other possible labels [6, 21] or similar classes
defined by humans [1, 10, 23]. However, for SSL-HF, the

Method CUB
Baseline 68.6 (0.6)
w. Confidence calibration [4] 69.9 (0.4)
w. ViT [3]∗ 85.7 (0.2)
w. DivideMix [9] 42.6 (0.6)

Table B. The enhancement by different methods. ∗When using ViT archi-
tecture, the supervised baseline of training only on the expert-labeled set
is 82.4 (0.3).

Method Cars
Baseline 30.2 (0.7)
Pseudo-Label [8] 30.9 (0.3)
Self-Training [16] 31.5 (0.4)
AL [5] 33.7 (1.1)
SSL-HF 37.3 (0.6)

Table C. Comparison with SSL and AL on Cars

noise is generated by the classifier. In fact, the drop is sen-
sible because if an improvement exists, it would be a free
lunch and can be embedded into the classifier training. But
in reality there is no literature on it.

F. Evaluation on More Domains
We also evaluated SSL-HF on Cars [7] following the

same setting as in [16]. SSL-HF still has a large gain.
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