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In this supplementary material, we provide more details
of our VideoMAE V2 and present more experiment results.
Specifically, we give a detailed description of the architec-
tures of our VideoMAE V2 in Section A. Then, we present
the details on building our pre-training datasets in Section B.
After this, we provide more implementation details in our
experiments in Section C. Finally, we give more results and
analysis on our VideoMAE V2 in Section D.

A. Model Architecture

We build the encoder and decoder in our VideoMAE V2
by using the vanilla ViT backbone with joint space-time
attention. To ensure efficient computation, our decoder does
not get larger as the encoder scales up, but always stays at the
size of 4 layers and 512 channels. We show the architectures
of VideoMAE V2 in Tab. 1, taking ViT-giant as an example.

B. Datasets

B.1. UnlabeledHybrid

Our UnlabeledHybrid dataset is a hybrid dataset consist-
ing of Kinetics [26], Something-Something [19], AVA [20],
WebVid2M [5], and our self-collected Instagram dataset.
When training VideoMAE V2, the sampling stride 7 is 2 on
Something-Something, and 4 on the other datasets. The de-
tailed components of UnlabeledHybrid are shown in Tab. 2.
We now specify the handling of each dataset.

Kinetics. Videos in Kinetics are from YouTube. We adapt
the same method with [3] to make a mixed kinetics dataset.
Kinetics has three versions, Kinetics-400/600/700, based
on the number of human action categories. We merge the
training set and validation set of the three versions, then
remove the duplicated videos according to YouTube IDs,
and finally delete the validation videos that existed in the
training set. As some videos have different category names
in different versions of Kinetics, we also group them together,
resulting in a Kinetics dataset with 710 categories, termed
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Kinetics-710 (K710) or LabeledHybrid. K710 contains 658k
training videos and 67k validation videos.

Something-Something. Videos in Something-Something
are shot from video scripts, usually from a first-person per-
spective. We choose Something-Something V2 (SSV2) as
the part of UnlabeledHbyrid dataset. SSV2 is a motion-
centric dataset containing 169k training videos and 25k vali-
dation videos.

AVA. Videos in AVA are movie clips, ranging from the
15th to the 30th minute of each movie. We always cut the
15-minute movie clips from the AVA training set by 300
frames, resulting in 21k video clips.

WebVid2M. Videos in WebVid2M are scraped from the
internet. We randomly pick 250k training videos from the
original datasets.

Self-collected Instagram dataset. We used thousands of
category tags from the already publicly available dataset as
query phrases to scrape million of videos from Instagram.
The average duration of the videos is 34 seconds. We also
randomly pick 250k videos from the dataset.

B.2. LabledHybrid

We build the labeled datasets for our VideoMAE post-
pre-training by taking the union of different versions of
Kinetics dataset. The construction details is following the
UniformerV2 [30] and more details could be referred to the
original paper.

C. Implementation Details

In this section, we will describe the implementation de-
tails in the three stages of progressive training: pre-training,
post-pre-training, and specific fine-tuning.



Stage VideoMAE V2-giant Output Size
Data UnlabeldHybrid 3 x 16 x 224 x 224
2 x 14 x 14,1408
Cube stride 2 x 14 x 14 1408 x 8 x 256
tube masking
Mask mask ratio = p 1408 x 8 x 256 x (1 — p)]
MHA (1408)
Encod 4 14 2 1-
ncoder [MLP(6144)] 0 08 x 8 x [256 x (1 —p)]
Projector MLP(512) 512 x 8 x [256 x (1 —p)]
running cell masking
Decoder Mask decoder mask ratio = p? 512 x 8 x ([256 x (1 — p)] 4+ [256 x (1 — p%)])
concat unmasked learnable tokens
MHA (512)
Decoder {MLP(2048)} 4 512 x 8 x (256 x (1 — p)] + [256 x (1 — p?)])
. discard visible tokens d
Projector MLP(1176) 1176 x 8 x 256 x (1 — p%)]
Reshape from 1176 to 3 x 2 x 14 x 14 3 x 16 x [224(1 — p?)| x |224(1 — p?) ]

Table 1. Architectures details of VideoMAE V2-g. The main difference between VideoMAE v2 and VideoMAE v1 is the dual masking
design. VideoMAE v2 does not reconstruct the full video clip, while only calculates MSE loss on tokens that are invisible to the encoder.

Dataset Size Source
K710 658k YouTube
SSV2 169k Shot from Scripts
AVA 21k Movie
WebVid2M 250k Internet
self-collected 250k Instagram
UnlabeledHybrid | 1.348M Multi-Source

Table 2. Components of UnlabeledHybrid. We build our unla-
beled pre-train dataset by collecting clips from multiple resources
to ensure the generalization ability of learned models by our Video-
MAE V2.

C.1. Pre-training

We pre-train VideoMAE V2, both ViT-huge and ViT-
giant, 1200 epochs on the UnlabeledHybrid dataset with
64 80G-A100 GPUs. Besides the dual masking core de-
sign of VideoMAE V2, we also adapt mix-precision train-
ing and checkpointing at the engineering level to speed up
pre-training. To avoid the potential precision overflow risk
during model pre-training, we train the encoder with FP-16
mixed precision and the decoder with FP32 precision. We
adapt repeated augmentation to reduce the video loading
overhead. The learning rate is scaled linearly according to
the total batch size, i.e. Ir = base_Ir x batch_size / 256. The
detailed pre-training setting is shown in Tab. 4.

C.2. Post-pre-training

In the supervised post-pre-training stage, we fine-tune
the pre-trained encoder on LabeledHybrid (K710). When
training ViT-giant, we found that the dropout layer before
the classification head has little positive effect on prevent-
ing overfitting, so the dropout layer was removed and the
drop path rate was increased slightly. The clip grading sta-
bilizes the optimization of large models in the early stages
of fine-tuning to some extent, and it is advisable to adjust
the value of the clip grading with the batch size changing.
The choice of layer decay matters. A smaller layer decay
better maintains the pre-training effect, but may not provide
enough space for improvement in the later stages of fine-
tuning. A relatively large layer decay is recommended when
the model is well pre-trained, i.e. when it exhibits smaller
gradients in the shallow layers and bigger gradients in the
deep layers at the early stages of fine-tuning. The detailed
settings are shown in Tab. 5. Notably, this setting also works
for fine-tuning directly on the kinetics dataset.

C.3. Specific fine-tuning

After the post-pre-training stage, we perform the specific
fine-tuning stage to get the specific models on action classifi-
cation, action detection, and temporal action detection.

C.3.1 Action classification

We test the performance of the specific models for action
classification on Kinetics [26], Something-Something [19],
UCF101 [42] and HMDBS51 [28] with regular 16 x 2242



Config Kinetics Kinetics Sth-Sth UCF101  HMDBS51
16 x 2242 64 x 2662 16 x 2242 16 x 2242 16 x 2242
optimizer AdamW
base learning rate le-5 le-4 3e-4 le-3 Se-4
weight decay 0.05
optimizer momentum B1, B2 = 0.9,0.999
batch size 32 32 96 24 24
learning rate schedule cosine decay
warmup epoch 0 0 5 5 5
epoch 3 5 10 50 15
repeated augmentation 2
RandAug 0, 0.5)
label smoothing 0.1
mixup 0.8
cutmix 1.0
drop path 0.3 0.35 0.35 0.35 0.35
flip augmentation yes yes no yes yes
augmentation MultiScaleCrop
dropout 0.5
layer-wise Ir decay 0.9
clip grading None
Table 3. Action classification setting in specific fine-tuning stage.
Config Value Config Value
mask ratio 0.9 optimizer AdamW [306]
decoder mask ratio 0.5 base learning rate le-3
optimizer AdamW [36] weight decay 0.05 (H), 0.1 (g)
base learning rate 1.5e-4 optimizer momentum 51,82 = 0.9,0.999 [11]
weight decay 0.05 batch size 128
optimizer momentum | S5y, 82 = 0.9,0.95 learning rate schedule cosine decay [35]
batch size 8192 warmup epoch 5
learning rate schedule cosine decay epoch 40 (H), 35 (g)
warmup epoch 120 repeated augmentation [23] 2
epoch 1200 RandAug [13] (0,0.5)
repeated augmentation 4 label smoothing [43] 0.1
flip augmentation no mixup [56] 0.8
augmentation MultiScaleCrop cutmix [53] 1.0
clip grading 0.02 drop path 0.2 (H), 0.3 (g)
flip augmentation yes
Table 4. Pre-training setting, where batch size includes the addi- augmentation MultiScaleCrop
tional views produced t?y repeated augmentation and epochs refers dropout 0.5 (H), None (g)
to the total number of times the data is sampled. layer-wise Ir decay [6] 0.8 (H), 0.9 (g)
clip grading None (H), 5.0 (g)

. Table 5. Post-pre-traini tting.
inputs. Further, we also test the performance of the model able 5. Post-pre-training setting

on Kinetics [26] with larger input shapes 64 x 2662. The

detailed fine-tuning setting of VideoMAE V2-g can be seen

in Tab. 3. At the specific fine-tuning stage, increasing the

dropout and drop path can reduce the risk of overfitting to stable after the supervised post-pre-training, so clip grading
a certain extent, and the optimization of the model is more is not necessary.



Config

AVA 2.2 AVA-Kinetics

optimizer

base learning rate
weight decay
optimizer momentum
batch size

learning rate schedule
warmup epoch

epoch

repeated augmentation

drop path

flip augmentation
layer-wise Ir decay
clip grading

AdamW
3e-4
0.05

B1, B2 = 0.9,0.999
128
cosine decay
2
10
no
0.3
yes
0.9
None

Table 6. Hyper-parameter settings of action detection.

Method | Modality | UCF101 | HMDB51
OPN [29] \4 59.6 238
VCOP [50] \ 72.4 30.9
SpeedNet [7] \" 81.1 48.8
VTHCL [52] v 82.1 49.2
Pace [46] \ 77.1 36.6
MemDPC [21] \ 86.1 545
CoCLR [22] \ 87.9 54.6
RSPNet [12] \ 93.7 64.7
VideoMoCo [38] v 78.7 49.2
ViCLR [14] \Y 89.1 55.7
CVRL [41] \Y 94.4 70.6
CORP; [24] \ 93.5 68.0
pSimCLR ,—5 18] \ 88.9 N/A
PSWAV ,_ [18] \% 87.3 N/A
pMoCo,—5 [18] \ 91.0 N/A
pBYOL,—4 [18] \Y 94.2 72.1
MIL-NCE [37] V+T 91.3 61.0
MMV [1] V+A+T 92.5 69.6
CPD [31] V+T 92.8 63.8
ELO [40] V+A 93.8 67.4
XDC [2] V+A 94.2 67.1
GDT [39] V+A 95.2 72.8
VideoMAE V1 v 96.1 73.3
VideoMAE V2 \ 99.6 88.1

Table 7. Comparison with the state-of-the-art methods on
UCF101 and HMDB51. ‘V’ refers to visual, ‘A’ is audio, ‘T’
is text narration. “N/A” indicates the numbers are not available.

C.3.2 Action detection

We follow the training pipeline of the original VideoMAE
i.e. person detection + action classification. We adapt only

Method Topl Top5 Views TFLOPs
I3D NL [48] 777 933 10x3 10.77
TDN [47] 794 944 10x3 5.94
SlowFast R101-NL [17] 79.8 939 10x3 7.02
TimeSformer-L [&] 80.7 94.7 1x3 7.14
MTV-B [51] 818 950 4x3 4.79
Video Swin [34] 83.1 959 4x3 7.25
MVIT-B [15] 812 951 3x3 4.10
ViViT-L FE [4] 817 938 1x3 11.94
MViTv2-B [32] 829 957 1x5 1.13
MViTv2-L (312p) [32] 8.1 970 3x5 4242
MaskFeat [49] 85.1 96.6 1x10 3.78
MaskFeat (352p) [49] 87.0 974 4x3 45.48
MAE-ST [16] 86.8 972 7x3 25.05
VideoMAE [45] 86.6 97.1 5x3 17.88
VideoMAE (320p) [45] 874 976 4x3 88.76
VideoMAE V2-H 886 979 5x3 17.88
VideoMAE V2-g 885 98.1 5x3 38.16
VideoMAE V2-H (64 x 288%) 89.8 983 4x3 153.34
VideoMAE V2-g (64 x 266%)  90.0 984 2x3 160.30
Methods using in-house labeled data

CoVeR (JFT-3B) [54] 87.2 1 x3

MTV-H (WTS) [51] 89.1 98.2 1 x 3 44.47
MTV-H (WTS 2802) [51] 89.9 98.3 1% 3 73.57

Table 8. Results on the Kinetics-400 dataset. We report the
performance of our pre-trained model with larger input resolution
and more frames.

Method Topl Top5 Views TFLOPs
SlowFast R101-NL [17] 81.8 951 10x3 7.02
TimeSformer-L [8] 82.2 95.6 1x3 7.14
MTV-B [51] 83.6  96.1 4x3 4.79
MVIT-B [15] 838 963 3x3 4.10
ViViT-L FE [4] 829 946 1x3 11.94
MViTv2-B [32] 855 972 1x5 1.03
MViTv2-L (352p) [32] 879 979 3 x4 45.48
MaskFeat [49] 86.4 974 1x10 3.71
MaskFeat (312p) [49] 883 98.0 3x4 33.94
VideoMAE V2-H 88.3  98.1 5x3 17.88
VideoMAE V2-g 888 982 5x3 38.16
VideoMAE V2-H (32 x 3842) 89.6 984 4x3 184.24
VideoMAE V2-g (64 x 266%) 899 985 2x3 160.30
Methods using in-house labeled data

CoVeR (JFT-3B) [54] 879 978 1x3 -
MTV-H (WTS) [51] 89.6 983 1 x 3 44.47
MTV-H (WTS 2802) [51] 90.3 985 1 x 3 73.57

Table 9. Results on the Kinetics-600 dataset. We report the
performance of our pre-trained model with larger input resolution
and more frames.

two data augmentations, random scale cropping, and random
horizontal flipping. When training, we use the ground-truth
person boxes, while in testing, we use the person boxes
detected by AIA [44]. More settings see in Tab. 6.



Config Value
optimizer AdamW [30]

base learning rate le-3 (K710), 5e-4 (SSv2)
weight decay 0.05

optimizer momentum B1, 82 =0.9,0.999 [11]
batch size 1024 (K710), 512 (SSv2)
learning rate schedule cosine decay [35]
warmup epoch 5

epoch 100

RandAug [13] 0, 0.5)

mixup [56] 0.8

cutmix [53] 1.0

drop path 0.1

flip augmentation yes
augmentation MultiScaleCrop
dropout None
layer-wise Ir decay [6] 0.75

clip grading 1.0
temperature 3.0

Table 10. Knowledge distilling setting.

Model | K400 K600 SSv2

VideoMAE-B 81,5 N/A 708
VideoMAE V2-g | 88.5 888 77.0

Distilled VIT-B | 87.1 874  75.0

Table 11. The performance of distilled ViT-B models on the datasets
of Kinetics400, Kinetics600, and Something-Something V2.

C.3.3 Temporal action detection

We take the model trained on the LabeledHybrid dataset
as the backbone network and test its generalization perfor-
mance on the temporal action detection task following the
architecture of ActionFormer [55] on THUMOS14 [25] and
FineAction [33]. When training, we use Adam [27] with
warm-up and fix the maximum input sequence length. As
for inference, we use Soft-NMS [10] on the result action can-
didates to remove the highly overlap proposals and obtain
the final result.

D. More Results

More results and analysis. We report more result com-
parisons on Kinetics with the larger input size in Tab. 8
and Tab. 9. We also add the results on UCF101 [42] and
HMDB51 [28] in Tab. 7. From these results, we see that
our model can further improve the recognition results by
using larger input. Meanwhile, on the smaller benchmarks
of UCF101 and HMDBS51, our model obtains state-of-the-art
performance, which is much better than the VideoMAE V1.

Distillation results. Using the procedure of [9], we are
able to compress VideoMAE V2-g into a mush smaller ViT-
B. Specifically, we initialize the student model with the
VideoMAE V2-B weights after the post-pre-training. Then,
we conduct the distillation on K710 (or SSv2) dataset for
100 epochs, with the goal of minimizing the KL divergence
between the student model’s logits and those of the teacher
model. Detailed settings see in Tab. 10. Our evaluation of
the distilled ViT-B model is based on its performance on
the K400, K600, and SSv2, as shown in Tab. 11. From
these results, we see that our distilled ViT-B model achieves
much better performance than the original VideoMAE ViT-B
models. We hope our distilled ViT-B model can serve as an
efficient foundation model for downstream tasks.
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