
A. Details of the illustration Example

In Sec. 2.3, we use an illustration example to draw the
theoretical results. Here we show the implementation detail
of this toy example.

Note that for the case d = 1, the data distribution is

x1 =

{
+y, w.p. py
−y, w.p. 1− py

and x2
i.i.d∼ N (ηy, σ2). (9)

In this toy model, we select p+1 = 0.85 > 0.7 = p−1

and η = 0.4. The variance σ2 is set to be 0.6 for better
visualization in this toy model, and in the following theo-
retical analysis, we set σ2 = 1 for simplicity. In Fig. 1(a),
we randomly sample 100 pairs of (x1, x2) for each class
y ∈ {+1,−1}. In Fig. 1(b), the robustness is evaluated un-
der perturbation bound ϵ = 2η = 0.8, which is consistent
to the evaluation in [22].

B. Proofs for Theorems in Sec. 2.3

B.1. Preliminaries

We denote the distribution function and the probability
density function of the normal distributionN (0, 1) as ϕ(x)
and Φ(x):

Φ(x) =

∫ x

−∞

1√
2π

e−
x2

2 dt = Pr .(N (0, 1) < x),

ϕ(x) =
1√
2π

e−
x2

2 = Φ′(x).

(10)

Recall that the data distribution is

x1 =

{
+y, w.p. py,
−y, w.p. 1− py,

x2, · · · , xd+1
i.i.d∼ N (ηy, 1),

(11)

where 1 > p+1 > p−1 > 1
2 . First we calculate the clean

accuracy Ay(fw) and the robust accuracy Ry(fw) for any
class y ∈ {+1,−1} and w > 0. Also recall that the classi-
fier

fw = sign(x1 +
x2 + · · ·+ xd+1

w
) (12)

Note that w > 0, we have

A+1(fw) = Pr .(sign(fw) = 1)

= Pr .(x1 +
x2 + · · ·+ xd+1

w
> 0)

= p+1 · Pr .(1 +
x2 + · · ·+ xd+1

w
> 0)

+ (1− p+1) · Pr .(−1 +
x2 + · · ·+ xd+1

w
> 0)

= p+1 · Pr .(x2 + · · ·+ xd+1 > −w)
+ (1− p+1) · Pr .(x2 + · · ·+ xd+1 > w)

= p+1 · Pr .(N (dη, d) > −w)
+ (1− p+1) · Pr .(N (dη, d) > w)

= p+1 · Pr .(N (0, d) > −dη − w)

+ (1− p+1) · Pr .(N (0, d) > −dη + w)

= p+1 · Pr .(N (0, 1) <
dη + w√

d
)

+ (1− p+1) · Pr .(N (0, 1) <
dη − w√

d
)

= p+1Φ(
dη + w√

d
) + (1− p+1)Φ(

dη − w√
d

).

(13)

Similarly, we have

A−1(fw) = p−1Φ(
dη + w√

d
)+(1−p−1)Φ(

dη − w√
d

). (14)

For the robustness, following the evaluation in the origi-
nal model [22], we evaluate the robustness Ry under l∞-
norm perturbation bound ϵ = 2η < 1. Consider the dis-
tribution of adversarial examples x̂ = (x̂1, x̂2, · · · , x̂d+1).
Since we restrict the robust feature x1 ∈ {−1,+1} and
ϵ < 1, we have x̂1 = x1. For the non-robust features
xi ∼ N (ηy, 1), the corresponding adversarial example has
x̂i ∼ N (−ηy, 1) under the perturbation bound ϵ = 2η.
Therefore, the distribution of adversarial examples is

x̂1 =

{
+y, w.p. py
−y, w.p. 1− py

and x̂2, · · · , x̂d+1
i.i.d∼ N (−ηy, 1).

(15)
By simply replacing η with−η in derivative process of (13),
for any w > 0, we have

R+1(fw) = p+1Φ(
−dη + w√

d
) + (1− p+1)Φ(

−dη − w√
d

),

R−1(fw) = p−1Φ(
−dη + w√

d
) + (1− p−1)Φ(

−dη − w√
d

).

(16)

B.2. Proof of Theorem 1
The theorem 1 shows the class y = −1 is intrinsically

difficult to learn than class y = +1:



Theorem 1 For any w > 0 and the classifier fw =
sign(x1+

x2+···+xd+1

w ), we haveA+1(fw) > A−1(fw) and
R+1(fw) > R−1(fw).

Proof. Note that p+1 > p−1, and Φ(dη+w√
d

) > Φ(dη−w√
d

),
we have

A+1(fw) = p+1Φ(
dη + w√

d
) + (1− p+1)Φ(

dη − w√
d

)

= p+1(Φ(
dη + w√

d
)− Φ(

dη − w√
d

)) + Φ(
dη − w√

d
)

> p−1(Φ(
dη + w√

d
)− Φ(

dη − w√
d

)) + Φ(
dη − w√

d
)

= A−1(fw).

(17)

B.3. Proof of Theorem 2

The theorem 2 shows the relation between the parameter
w and the attack strength (perturbation bound ϵ) in adver-
sarial training:
Theorem 2 For any 0 ≤ ϵ ≤ η, the optimal parameter w for
adversarial training with perturbation bound ϵ is monotone
increasing at ϵ.
Proof. Similar to the adversarial example distribution anal-
ysis (15), under the perturbation bound ϵ, the data distribu-
tion of the crafted adversarial example for training is

x̃1 =

{
+y, w.p. py
−y, w.p. 1− py

,

x̃2, · · · , x̃d+1
i.i.d∼ N ((η − ϵ)y, 1).

(18)

We use Ã(fw), Ãy(fw) to denote the overall and class-wise
train accuracy of the classifier fw on training data distri-
bution (18). Let p = p+1 + p−1. Then the overall train
accuracy of fw is

Ã(fw) =
1

2
(Ã+1(fw) + Ã−1(fw))

=
1

2
(p+1Φ(

d(η − ϵ) + w√
d

) + (1− p+1)Φ(
d(η − ϵ)− w√

d
)

+ p−1Φ(
d(η − ϵ) + w√

d
) + (1− p−1)Φ(

d(η − ϵ)− w√
d

))

=
1

2
(pΦ(

d(η − ϵ) + w√
d

) + (2− p)Φ(
d(η − ϵ)− w√

d
)).

(19)

Now we calculate the best parameter w for Ã(fw). Note
that Φ′(x) = ϕ(x), we have

∂Ã(fw)
∂w

=
1

2
√
d
(pϕ(

d(η − ϵ) + w√
d

)− (2− p)ϕ(
d(η − ϵ)− w√

d
))

=
1

2
√
2πd
{p exp[−1

2
(
d(η − ϵ) + w√

d
)2]

− (2− p) exp[−1

2
(
d(η − ϵ)− w√

d
)2]}

(20)

Therefore, ∂Ã(fw)
∂w > 0 is equivalent to

p exp[−1

2
(
d(η − ϵ) + w√

d
)2] > (2− p) exp[−1

2
(
d(η − ϵ)− w√

d
)2]

⇐⇒ exp[−1

2
((
d(η − ϵ) + w√

d
)2 − (

d(η − ϵ)− w√
d

)2)] >
2− p

p

⇐⇒ exp[− 1

2d
· (4d(η − ϵ)w)] >

2− p

p

⇐⇒ exp[−2(η − ϵ)w] >
2− p

p

⇐⇒ −2(η − ϵ)w > ln(
2− p

p
)

⇐⇒ w <
1

2(η − ϵ)
ln(

p

2− p
) := ŵϵ.

(21)

Recall that we assume p+1, p−1 > 1
2 , thus p = p+1+p−1 >

1 and p
2−p > 1. Therefore, ∂Ã(fw)

∂w > 0 when w < ŵϵ,

and ∂Ã(fw)
∂w < 0 when w > ŵϵ. We can conclude that fw

obtains the optimal parameter w, i.e., w achieves the highest
train accuracy, when w = ŵϵ = 1

2(η−ϵ) ln(
p

2−p ), which is
monotone increasing at ϵ.

B.4. Proof of Theorem 3

Theorem 3 shows the clean accuracy of the hard class
y = −1 drops earlier than class y = +1 as the attack
strength increases:

Theorem 3 Let w∗
y = argmax

w
Ay(fw) be the parameter

for the best clean accuracy of class y, then w∗
+1 > w∗

−1.

Proof. As calculated in (13) and (14), we have Ay(fw) =

pyΦ(
dη+w√

d
) + (1− py)Φ(

dη−w√
d

) and

∂A(fw)
∂w

=
1√
d
(pyϕ(

dη + w√
d

)− (1− py)ϕ(
dη − w√

d
)).

(22)



Therefore, ∂A(fw)
∂w > 0 is equivalent to

exp{−1

2
[(
dη + w√

d
)2 − (

dη − w√
d

)2]} > 1− py
py

⇐⇒ exp{−2ηw} > 1− py
py

⇐⇒ −2ηw > ln(
1− py
py

)

⇐⇒ w <
1

2η
ln(

py
1− py

).

(23)

Similar to the proof of Theorem 2, we have w∗
y =

argmaxAy(fw) =
1
2η ln(

py

1−py
). Since 1 > p+1 > p−1 >

1
2 , we have p+1

1−p+1
> p−1

1−p−1
> 1 and hence w∗

+1 > w∗
−1.

B.5. Proof of Theorem 4
Theorem 4 shows how strong attack in adversarial train-

ing hurts the hard class y = −1:
Theorem 4 Suppose ∆w > 0, then for ∀w > w∗

+1,
A−1(fw+∆w)−A−1(fw) < A+1(fw+∆w)−A+1(fw) <
0, and for ∀w > 0, 0 < R−1(fw+∆w

) − R−1(fw) <
R+1(fw+∆w)−R+1(fw).
Proof. First we prove for u > w∗

+1,

A−1(fw+∆w)−A−1(fw) < A+1(fw+∆w)−A+1(fw) < 0.
(24)

Since we have

Ay(fw+∆w
)−Ay(fw) =

∫ w+∆w

w

∂Ay(fu)

∂u
du, (25)

It’s suffice to show that

∂A−1(fu)

∂u
<

∂A+1(fu)

∂u
< 0, ∀u > w∗

+1. (26)

Recall that in the proof of Theorem 3, we have shown

∂A(fu)
∂w

=
1√
d
(pyϕ(

dη + w√
d

)− (1− py)ϕ(
dη − w√

d
))

=
1√
d
{py[ϕ(

dη + w√
d

) + ϕ(
dη − w√

d
)]− ϕ(

dη − w√
d

)}.

(27)

Therefore, since p−1 < p+1 and ϕ(dη+w√
d

) + ϕ(dη−w√
d

) > 0,
we have

∂A−1(fu)

∂u
<

∂A+1(fu)

∂u
. (28)

Further, since u > w∗
+1, we have ∂A+1(fu)

∂u < 0 as shown
in the proof of Theorem 3.

Next, we prove that for ∀w > 0,

0 < R−1(fw+∆w
)−R−1(fw) < R+1(fw+∆w

)−R+1(fw).
(29)

Similarly, it suffice to show

0 <
∂R−1(fu)

∂u
<

∂R+1(fu)

∂u
, ∀u > 0. (30)

Recall the expression (16), we have

Ry = pyΦ(
−dη + w√

d
) + (1− py)Φ(

−dη − w√
d

), (31)

hence
∂Ry(fw)

∂w
=

1√
d
{pyϕ(

−dη + w√
d

)− (1− py)ϕ(
−dη − w√

d
)}

=
1√
d
{py[ϕ(

−dη + w√
d

) + ϕ(
−dη − w√

d
)]− ϕ(

−dη − w√
d

)}

(32)

Since p+1 > p−1 and ϕ(−dη+w√
d

) + ϕ(−dη−w√
d

) > 0, we
have

∂R−1(fu)

∂u
<

∂R+1(fu)

∂u
. (33)

Finally, as d, η, w > 0, we have (−dη+w√
d

)2 < (−dη−w√
d

)2

by comparing their absolute value. This indicates
ϕ(−dη+w√

d
) > ϕ(−dη−w√

d
). Also note that p−1 > 1

2 and
p−1 > (1− p−1), we have

1√
d
{p−1ϕ(

−dη + w√
d

)− (1− p−1)ϕ(
−dη − w√

d
)} > 0,

(34)
which completes our proof.

C. More Experiments
Here we present additional experimental results.

C.1. Experiment on Tiny-ImageNet
Besides CIFAR-10, we additionally compare CFA with

baseline+EMA on Tiny-ImageNet with ResNet-18 under
ℓ∞-norm bound ϵ = 4/255. Since the worst class robust-
ness is extremely low and there are only 50 images for each
class in the test set, we report the average of the worst-20%
class robustness. The threshold of FAWA is also set on the
average robustness of these classes on validation set. The
results in Table 4 shows that our CFA framework still out-
performs baseline+EMA on Tiny-ImageNet.

C.2. Class-wise robustness comparison
To evaluate class-wise robustness, we present a com-

parison between CFA and EMA on CIFAR-10, as shown
in Fig. 6. The results show that CFA significantly out-
performs EMA on classes {2,3,4,6}, while slightly drop-
ping on classes {7,8}. Compared with the improvements,
the decreases are very slight. Moreover, the variance of
class-wise robustness, which measures differences between
classes, is also lower for CFA (0.15) compared to EMA
(0.17). This indicates that CFA indeed reduces the differ-
ence among class-wise robustness and improves the fairness
without harming other classes.



Table 4. Overall comparison of experiment on Tiny-ImageNet.

Tiny-ImageNet Best (Avg. / Worst-20%) Last (Avg. / Worst-20%)
Method Clean AA. Clean AA.

AT 41.1/16.4 20.2/3.6 39.4/17.3 14.9/1.6
AT + EMA 40.7/14.7 21.8/4.2 41.6/19.8 17.4/3.9
AT + CFA 41.2/16.2 22.4/5.2 42.3/20.0 19.9/4.8

TRADES 43.2/18.4 20.9/3.7 42.5/18.7 18.8/3.4
TRADES + EMA 41.2/19.5 21.6/4.1 43.3/19.8 19.9/3.8
TRADES + CFA 41.7/20.0 22.3/5.5 42.4/19.6 21.2/5.2

FAT 43.6/19.2 19.2/2.6 39.7/17.8 14.3/1.7
FAT + EMA 43.4/18.6 21.0/4.1 42.9/19.9 17.0/2.6
FAT + CFA 43.7/19.6 21.6/4.9 43.6/21.3 19.1/3.4

Figure 6. Class-wise robustness comparison between
TRADES+EMA and TRADES+CFA on CIFAR-10 dataset
at the best checkpoint. Robustness evaluated under AutoAttack.

C.3. Selection of λ2

Following our analysis on the selection of the perturba-
tion budget λ1 for AT+CCM in Sec. 5.3.1, we conduct a
similar analysis on the influence of regularization budget
λ2 for TRADES + CCM + CCR in Fig. 7.

In Fig. 7(a), we compare the selection of λ2 from 0.3
to 0.7. The robustness is evaluated under PGD-10. The
base perturbation budget λ1 of CCM is still selected as 0.3.
Comparing to vanilla TRADES, our TRADES+CCM+CCR
outperforms in the worst class robustness significantly, and
the overall robustness is marginal higher than TRADES for
λ2 = 0.4, 0.5 and 0.6.

Fig. 7(b) shows the βy used in the case λ2 = 0.4. We can
see that the hard classes use βy ≈ 6, while the easy classes
use higher βy . This is consistent to our analysis on class-
wise robustness under different regularization β in Sec 3.2.

(a) (b)

Figure 7. Analysis on the base regularization budget λ2. (a): Aver-
age and the worst class robustness of models trained with different
λ2 (solid) and vanilla TRADES (dotted). (b): Class-wise cali-
brated regularization βy in the training phase of λ2 = 0.4.


