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Supplementary Document

A. Overview

This supplementary document contains extended techni-
cal details, along with qualitative and quantitative results
that supplement the main document. After introducing our
video results, we cover details of our network architectures
and their applications (Sec C). We then provide detailed ex-
planations of our two main experiment setups: Table-Chair
(Sec. D) and 3D-FRONT (Sec. E). Next, we conduct addi-
tional analysis experiments in Sec. F. Finally, we discuss
failure modes (Sec. G) and future directions (Sec. H).

B. Video Results

In order to better visualize the 3D structures of the out-
puts and the denoising process, we provide videos of these
processes in the format of an HTML website. We highly
encourage the viewers to open the file “LEGO.html” and
watch the videos for a direct view of the denoising process.

C. Architecture Details
C.1. Input Object Attribute Encoding

For each object attribute o; = (¢;, t;, 4, bs, h;), we pro-
cess it into an object token §; € R%12 to input into the trans-
former. The details are as follows.

We embed the translation ¢;, rotation r; =
[cos(6;),sin(0;)]T, and bounding box dimension b;
with a sinusoidal positional encoding of 32 frequencies.
The frequencies are a geometric sequence with initial term
1 and common ratio 12831, which gives an ending term of
128. The positional encoding is therefore

PE(z) = {sin(128797x), cos(12871z) | 0 < j < 31} € R%.

Applying PE to t; = [t; z,t;,] and b; = [b; 2, b; ] gives
128-dimensional embeddings, whereas applying it to 6;
gives a 64-dimensional embedding. We then additionally
process PE(f;) with a linear layer mapping to R128,

As mentioned, for object class c;, we utilize a 2-layer
MLP with leaky ReLU activation to process the one-hot en-
coding into a 128-dimensional attribute. The above four
features are concatenated to form a 512-dimensional vector.

We also optionally process a pose-invariant shape feature
h; from ConDor [11]. More specifically, we pretrain Con-
Dor on the 3D point clouds provided by 3D-FRONT [4],
and extract the product of the Tensor Field Network layer
output and spherical harmonics coefficients from ConDor
to provide pose-invariant features in R1924x128 capturing
the shape of each object. Taking the mean across the 1024
points gives a 128-dimensional feature, which we then pass
through a 2-layer MLP with leaky ReLLU activation to obtain
the final shape feature in R'28. We apply the shape feature
h; in the Grouping by Shapes experiment to demonstrate its
effectiveness.

Finally, the concatenated attributes for each object lie in
R640 and are processed through 2 linear layers with leaky
ReLU activation to produce a 512-dimensional object token
for the transformer. Note that if floor plan is utilized, we
modify the final layer to produce a 511-dimensional feature,
and utilize the last bit to distinguish object tokens from floor
plan tokens.

C.2. Floor Plan Encoder Architecture

We represent each floor plan as 250 randomly sampled
contour points. We represent each point through its 2D po-
sition coordinate and the 2D normal of the line it is on. In
aggregate, we represent each floor plan with a feature in
R250x4

We employ a simplified PointNet [10] as the floor plan
encoder to extract one unified floor plan feature from this
representation. The encoder first processes the feature
with 3 linear layers and Leaky ReLU activation, mapping
the feature dimension through [4,64,64,512]. Then, we
max pool the resulting embedding in R2°0%312 to obtain
a global floor-plan encoding in R%'2. We then pass this
global representation through one final linear layer and ap-
pend a binary bit distinguishing it from object tokens. Fi-
nally, we combine this floor plan token with the | X | num-
ber of 512-dimensional object tokens and pass the resulting
(|X| + 1) x 512 input matrix to the transformer.

C.3. Output Layers

The backbone transformer outputs (| X | 4 1) x 512 fea-
ture tokens. We ignore the floor plan token and use the | X|



object tokens to predict denoising transformations. We ap-
ply 2 linear layers with leaky ReLU activation to the output
tokens to map to 256 dimensions then 4 dimensions, and
finally obtain the absolute transformation predictions.

C.4. Inference Langevin Dynamics Parameters

During inference, we use the Langevin Dynamics
scheme to iteratively denoise a messy scene input. As men-
tioned, for time step 7, we select a(7) = ag/(1 + a1 * T)
to regulate the step size and 5(7) = fp * br/ b2 1o regu-
late the noise added at each iteration. We empirically select
a1 = 0.005 and b; = 0.9. For the living room, we adopt
ag = 0.1, Bp = 0.01, and b, = 10. For bedroom, we adopt
oo = 0.08, By = 0.008, and by = 8.

We break from the iterative denoising process upon
any one of two conditions: (1) if for 3 consecutive itera-
tions, both the predicted translation displacement vector has
Frobenius norm less than 0.01 and the predicted rotation an-
gle displacement is less than 0.005 radians, or (2) we have
reached 1500 iterations.

D. Table-Chair Experiment
D.1. Data Generation

To analyze the regularities our model can capture, we
propose three synthetic Table-Chair experiment settings,
with a focus on Symmetry and Parallelism, Uniform Spac-
ing, and Grouping by Shapes respectively.

For each of the proposed experiments, we generate clean
scenes based on designed rules and take a bimodal approach
at perturbations when generating clean-messy training data
pair. More specifically, for half of the synthesized clean
scenes, we employ a Gaussian noise kernel whose standard
deviation is drawn from a zero-mean Gaussian distribution
with a small standard deviation (0.01 for translation and
/90 for rotation angle). For the other half of the clean
scenes, we employ a Gaussian noise kernel whose standard
deviation is drawn from a zero-mean Gaussian distribution
with a relatively larger standard deviation (0.25 for trans-
lation and 7 /4 for rotation angle). For the other training
details, we follow the same paradigm as in the 3D-FRONT
experiments.

D.2. Inference Parameters

As for the 3D-FRONT experiments, we employ the
Langevin Dynamics scheme to rearrange a given perturbed
Table-Chair arrangement. We empirically adjust the param-
eters to slightly increase the step size, accelerate the noise
decay schedule, and loosen the termination condition. In
particular, we select oy = 0.12, a; = 0.005, By = 0.01,
by = 0.9, by = 2, and terminate once the predicted dis-
placements are small enough in magnitude for 1 iteration.
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Figure 1. Regularities learning results (additional visualizations).
We train our denoising network to learn three different regularities.
LEGO-Net learns the complex regularity rules as demonstrated by
the iterative denoising results shown on the right. Zoom in for
details, especially for the shape-based grouping.

D.3. Success Rate

As mentioned, we measure LEGO-Net’s performance in
each Table-Chair environment through the success rate of
its rearrangement. We will now elaborate on its criteria.

Symmetry and Parallelism: For a rearrangement to be
classified as a success, it must satisfy the following:

* The mean euclidean distance of per-object movement
averaged across scenes is less than 0.5.

* For each chair, the angular offset between its orienta-
tion and the table-facing orientation is less than /60
radians.

* Given the two rearranged table positions, we com-
pute their respective chair positions and perform Earth
Mover’s Distance assignment using these as target and
the final predicted chair positions as source. The to-
tal distances summed across all 12 chairs for the 2 ta-
bles need to be less than 0.08. Note that this metric
integrates colinearity, parallelism, and symmetry, and
penalizes collision.

Uniform Spacing: For a rearrangement in the Uniform
Spacing experiment to be classified as a success, it must sat-
isfy the first two criteria for the Symmetry and Parallelism
experiment. For the third criteria, because the number of



chairs arranged around each of the 2 circular tables is vari-
able, we cannot formulate the Earth Mover’s Distance as-
signment as in the Symmetry and Parallelism experiment.
Instead, to measure how well an arrangement captures the
object-object relationships and regular relative positioning,
we compute two other metrics.

For each table, we compute the angular distances be-

tween each adjacent pair of its chairs and measure the vari-
ance of these distances. We designate that a successful ar-
rangement must have an angular distance variance of less
than 0.009 radians. Additionally, given we utilize a fixed
radius to generate clean chair arrangements around tables,
we can measure the mean difference between the chair-to-
closest-table distance and this radius. We designate that the
magnitude of this difference needs to be less than 0.01 for
an arrangement to be considered successful.
Grouping by Shapes: Similarly, for a rearrangement in
the Grouping by Shapes experiment to be classified as a
success, it must satisfy the first two criteria for the Sym-
metry and Parallelism experiment. Additionally, we once
again can compute the exact regular arrangement of chairs
with respect to the table, enabling us to calculate the Earth
Mover’s Distance from the final predicted chair positions to
the clean configuration with respect to the predicted table
position. We designate that the distance summed across the
6 chairs needs to be less than 0.05.

Furthermore, to measure success at grouping, we require
that each row must be assigned exactly 3 chairs and that all
chairs assigned to the same row must have the same shape
feature.

D.4. Additional Qualitative Results

In Fig. 1, we provide additional qualitative renderings
for the three Table-Chair experiments.

E. 3D-FRONT Experiment

To process the 3D-FRONT dataset [4], we closely follow
the preprocessing protocol of ATISS [9]. For each scene, we
extract from the given meshes and parameters the transla-
tion, rotation, class, and bounding box size for every object,
and we normalize all lengths to be in [—1, 1]. We addition-
ally extract accurate contours of the floor plans by running
an iterative closest point algorithm [1], using the contour
corner points of ATISS’s binary floor plan masks as source
and the relevant vertices from 3D-FRONT floor meshes as
target.

E.1. Baseline Description

We compare against three variants of ATISS: vanilla,
labels, and failure-correction. As described in the main
text, vanilla is the original ATISS approach that generates
a scene from scratch given the floor plan. ATISS labels

is given the floor plan, as well as a set of furniture labels
and the transformations and sizes of the labeled objects.
ATISS failure-correction is proposed as an application to
the probabilistic generative modeling of ATISS. It identi-
fies which object is likely to be a failure and resamples that
object given all the other objects. While the original paper
only showed the technique to work when a single object is
perturbed, we find it reasonable to extend the algorithm to
multi-object perturbation cases. Specifically, we provide a
scene with all objects perturbed (same input as LEGO-Net)
and iteratively resample the lowest-probable object. We
stop the iteration when it reaches 1,000 times or when the
minimum probability is higher than a manually set thresh-
old. We note that while failure-correction did not perform
as expected when all of the objects are perturbed, as shown
in Fig. 2, it is the closest baseline we could find in the liter-
ature that performs data-driven denoising of a scene.

For the comparisons, we use the official training and test-
ing code provided by the authors of ATISS without modi-
fications. For ATISS failure-correction, we add a for-loop
and stopping criteria on top of their implementation, and
maintain the scales of objects as fixed to be coherent with
the rearrangement task.

E.2. Metric Description

For FID and KID computation, we first generate the
same number of scenes as in the test dataset and randomly
select 500 from the generated scenes. We then randomly
select 500 real scenes from the 3D-FRONT dataset to com-
pare against. For both FID and KID, we repeat the metric
computation 5 times and report the average. Note that for
computing the FID scores for ATISS, we used the officially
provided code and followed their exact evaluation proce-
dure, but we failed to reproduce their numbers. Hence, we
use our own way of computing the metrics and report ours.

We note that the Frechet Inception Distance (FID) [5] is
known to present significant positive bias when the num-
ber of images is small (e.g., < 2000). In our case, we're
dealing with an even smaller number of test images. There-
fore, to compute a metric that is less biased in the small-data
regime, we adopt the Kernel Inception Distance [2], which
is known to address the bias problem and present small vari-
ance even at a few hundred samples.

Distance Traveled. As discussed in the main text, we aim
at rearranging the messy scenes while retaining the flavor
of the original scenes. Practically, cleaning a room should
move objects as minimally as possible while realizing reg-
ularities. Therefore, we measure and report the mean of
the average distance traveled for scenes. More specifically,
for each scene, we compute the average Euclidean distance
between the corresponding objects in the initial and final
states, and take the mean across scenes.

Note that for ATISS vanilla, this metric is not applica-
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Figure 2. Qualitative comparison against ATISS-failure-correction. We show qualitative examples illustrating the difference in behaviors
between our method and the closest method on the same task, ATISS failure-correction. Being a generative model, ATISS is able to
compute the probability of the current object transformations and resample the ones with low probability. While ATISS has demonstrated
great results in their paper when only a single object is perturbed, we observe that when all objects are perturbed, ATISS failure-correction
has a hard time fixing the scene to a reasonable regular configuration. We hypothesize that this is due to the one-prediction-at-a-time nature
of ATISS - it is difficult to find a good location to put the current object when all the other objects are perturbed. On the other hand, our
method simultaneously optimizes for all the objects, avoiding such difficulty. Even for the highly challenging scene structure of the second
row, our method is able to provide a high-quality layout, while ATISS failure-correction fails to find regular rearrangement.

ble as the method randomly places objects into the scene.
For ATISS failure-correction, we calculate this metric by
computing the distance between the initial position of each
object and its final position after applying the algorithm.

EMD to GT. In order to measure how accurately our
method recovers the original scene configuration, we mea-
sure the Earth Mover’s Distance between the final and the
ground truth scene states. Note that computing the differ-
ence between the denoising prediction and the ground truth
is widely used in the image-denoising literature, using such
metrics as PSNR or SSIM [7]. ATISS vanilla and labels
do not receive the messy scene as input, so this metric is
not applicable to them. On the other hand, ATISS failure-

correction directly fixes the input scene, thus we may mea-
sure how accurately it recovers the original clean scene. Fi-
nally, we note that the EMD to GT metric becomes highly
noisy and irrelevant when the noise added to perturb the
clean scenes becomes too high, as then, there is scarsely
any locational information left in the messy inputs.

E.3. Additional Qualitative Results

We provide additional qualitative results on the 3D-
FRONT dataset. We show more comparisons against the
closest method on the scene rearrangement task, ATISS
failure-correction, in Fig. 2, and more results of our method
in Fig. 9.



Bedroom T Living Room 1

PointNet W/O Noise 84.4% 54.4%
PointNet W/ Noise 84.2% 54.2%
ResNet W/O Noise 83.8% 54%

ResNet W/ Noise 83.6% 54.2%

Table 1. Percentage of denoised scenes with 90% of its fur-
niture within the floor plan boundaries. We train and test our
method using different floor plan encoding architectures (PointNet
vs. ResNet), and measure the percentage of the denoised scenes
where most furniture respect the room boundaries.

F. Analysis (Continued)
F.1. Enforcing Floor Plan Constraints

In this section, we analyze our choice of floor plan en-
coder. As described in the main text, we extract points on
the boundary of the binary floor plan mask, and process
them with a PointNet [10] to obtain a unified feature vector
describing the floor plan. We note that, in ATISS [9], a 2D
convolutional network with residual connections (ResNet)
was used to process the floor plans. Here, we conduct an
experiment to justify our use of PointNet architecture. As
a baseline, we use the ResNet architecture from ATISS, but
augment the input floor plan with two additional channels
corresponding to the xy coordinate for each pixel center,
which is known to provide “spatial awareness” to the 2D
CNN (in CoordConv [8]). We expect this variant of ResNet
to work at least as well as the vanilla ResNet with binary
mask input used in ATISS.

To compare the two methods of floor plan encoding, we
train two variants of the model, using ResNet or PointNet
floor plan encoding architecture. To test the effectiveness of
the two methods, we measure how often furniture is moved
outside the floor boundaries. Specifically, a scene rear-
rangement is considered successful when 90% of objects
are placed inside the floor boundary within 4% of its length
margin. While respecting the floor boundaries does not nec-
essarily lead to high-quality, regular scenes, we empirically
find this metric as a reasonable proxy. As can be seen from
the numerical results of Tab. 1, the use of PointNet outper-
forms that of ResNet by a slight margin. However, we note
that using PointNet is significantly faster, having almost no
computational overhead for operating on the sampled 250
boundary points. We, therefore, choose to use the simpler
but similar-performing PointNet to encode the scene floor
plans.

F.2. Relative vs Absolute

2D diffusion models perform better at predicting the
noise than the un-noised images [6]. However, for our set-
ting, we observed that the absolute prediction models gen-

Distance  Direction EMD
Moved |  Offset | to GT |
Absolute 2.98e-1 1.10e-3  5.16e-2
Relative 2.47e-1 4.21e-4 1.58e-1
Relative Translation
& Absolute Rotation  2.73e-1 5.18¢-4  2.83e-1

Table 2. Mean statistics from denoising results using the gradient
with noise strategy for the Uniform & Parallelism Table-Chair ex-
periment. The relative prediction model slightly outperforms the
absolute prediction model in terms of distance moved and angular
orientation offset, but it performs much worse in terms of EMD to
GT as although it maps objects to the right general region, it does
not place them as precisely as the absolute model.

erally outperform their relative counterparts in the Table-
Chair environment. We trained 3 variants of the same archi-
tecture network for the Uniform & Parallelism Table-Chair
setting: (i) absolute translation and rotation prediction, (ii)
relative translation and rotation prediction, and (iii) relative
translation and absolute rotation prediction.

Following the criteria in D.3, both variants (ii) and (iii)
surprisingly report success rates of 0%. Upon further in-
vestigation (shown in Tab. 2), variants (ii) and (iii) perform
comparably, if not better, at limiting the distance of move-
ment and orienting chairs to face the tables, but they sig-
nificantly underperform (i) in terms of Earth Mover’s Dis-
tance to Ground Truth chair positions with respect to the
predicted table position. With the same denoising parame-
ters, the relative variants consistently fail to place the chairs
as precisely as the absolute variant. The superior perfor-
mance of the absolute variant may partly be explained by
the fact that this setting has a relatively limited space of
possible regular arrangements. The observed deficiency of
relative predictions may diminish as the complexity of the
scene increases.

We believe that relative transformation prediction is an
important future direction to explore, as they offer trans-
lation invariance, which is particularly valuable for large-
scale scenes. Currently, the position and orientation infor-
mation in our input object attributes are global, and thus our
system is not translationally invariant. An interesting direc-
tion for future investigation is to explore a sliding-window-
style input processing to ensure translation invariance and
to apply positional encoding to the output transformations.

F.3. Distance to Ground Truth and Distance Moved
vs. Noise

Since the task of rearrangement values affinity to the
starting configuration of objects, one question of interest
is how closely we recover the original clean arrangement
when given a perturbed version of it, versus another pos-
sibly equally valid, clean arrangement. Its correlation with
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Figure 3. LEGO-Net denoising results on different noise levels (additional visualization to Fig.7 of the main text). When the perturbation
added to the scene is low, LEGO-Net is able to closely reconstruct the clean version of the scene. In contrast, when the noise level is high,
our denoising process finds a different realization of a regular scene, behaving more like an unconditional model. We provide numerical

evidence for this phenomenon in Tab. 4.
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Figure 4. LEGO-Net denoising results on different noise

levels (supplementing Fig.8 of the main text). The hori-
zontal axis specifies the standard deviation of the zero-mean
Gaussian distribution from which the (translation) noise level
is drawn, and the vertical axis specifies distance in scenes
normalized to [—1,1]. We compute mean statistics across
100 scenes at [0.01,0.05,0.1,0.2,0.3,0.5,0.7] for the stan-
dard deviation of the translation noise level distribution and at
[7/90,7/24, 7 /12,7 /4,7 /3,7 /2, 7] for that of rotation angle.

the level of noise added is intuitive—we expect that when the
perturbation is low, we more closely reconstruct the original
scen with a low distance moved whereas when the perturba-
tion is high, our model may choose a regular arrangement
different from that of the original scene in an effort to min-
imize the distance moved (see Fig. 3). This is indeed what
we have observed numerically, as shown in Fig 4.

Note that with a low degree of noise, our model performs
the task of rearrangement, but as the degree of noise in-
creases, our model gradually transitions to the task of ar-
rangement. In the extreme case where we give LEGO-Net
a scene with objects outside of the floor plan, LEGO-Net is
able to perform scene arrangement from scratch (see Fig. 5).

The open-endedness in the definition of regularity is one
of the reasons why this task is both challenging and inter-

esting. The interpolation-like behavior of LEGO-Net condi-
tioned on the degree of noise signifies the learnable relation-
ship between rearrangement and synthesis, and it demon-
strates that a diffusion-like approach holds promising po-
tential at such open tasks.

F.4. Integer Relations

The task of evaluating regularity in an object arrange-
ment is itself an interesting research problem because, in
general, multiple regular solutions are possible. To eval-
uate and quantify the notion of “regularity” in object ar-
rangements, we propose using number-theoretic machinery
for detecting and evaluating sparse linear integer relations
among object coordinates. That is, given coordinates t;’s
for n objects, we seek to find integral coefficients a;’s such
that:

aity + ... +ant, =0, 0<|a;| <n,Va;, (1)

For simplicity, we consider each dimension of the
cooridnates separately, i.e., {; € R. Additionally, in prac-
tice, we introduce an additional parameter € to control the
precision of the solutions found. In particular, we seek to
find relationships such that |a1t; + ... + ant,| < €. For
our evaluation, we fix ¢ = 0.01 to focus on the near-perfect
relations while allowing some leeway for insignificant off-
sets. To efficiently find these integer solutions, we employ
the PSLQ algorithm [3].

When the subset size n and maximum coefficient mag-
nitude constraint 7 are small, the integer relations can be
intuitively understood (e.g. representing co-linearity, sym-
metry, uniform spacing among few objects). To capture
more complex and more general notions of regularity, we
increase n and 7. Doing so preicipitates two challenges.
First, the number of possible subsets of size n for each
scene increases rapidly as n increases, compromising effi-
ciency. Secondly, experimentally running the algorithm on
pure noise shows that with looser constraints, we may find
many trivial relations that do not appear to correspond to
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Figure 5. Extreme case rearrangement. When the amount of noise added is exceedingly high, the original scene structure is gone. Running
our denoising algorithm then amounts to unconditional sampling and leads to an arrangement significantly different from the ground truth.

-
-

2 Object Relations, =5

0.55 3 Object Relations, n=5 0 08

Average Integer Relation Score
o

c 0.7

©

£
&0 \
c 05

3 3
£ 1 E 05 -\
S 09 S 045 \
c c
0 0.8 o 04
S \ =1
So7 - 5035
% 0.6 \\\/\ ﬂé 0.3
: 2
go.s 2 0.25
£o04 £ 02
0 005 041 02 03 04 05 0 0.05 0.1

Noise Level (std.)

—t—Ground Truth

Noise Level (std.)

o

E 04 \

5 M
K 0.3

= 0.2

02 03 04 05 0 005 01 02 03 04 05
Noise Level (std.)

LEGO-Net w/o Noise e EGO-Net w Noise «===ATISS Vanilla e==ATISS Failure

Figure 6. We measure the chance of finding integer relations among the coordinates of 2 (left) and 3 (middle) objects within a living room
scene for n = 5. We aggregate these two settings with the two presented in the main text to produce an overall average integer relation
score (right) for general regularity. We normalize all raw chance measures by the maximal chance across the four settings, making all
numerical values directly comparable. Note that LEGO-Net outperforms the ATISS variants.

high-level ‘cleanness’. To counter these, we introduce two
filtering mechanisms to increase the subset sampling effi-
ciency and to filter out the insignificant relations.

We observe that regualrities of interest to us mostly oc-
cur among objects in close proximity to one another, such as
tables and chairs. Therefore, for n > 2, instead of sampling
from all possible subsets of the objects in the scene, we iter-
ate through each object and sample from the object’s posi-
tional neighborhood. For n = 3, for each object, we sample
2 from the closest 4 neighboring objects to form {¢1, 2, t5}.
This greatly improves sampling efficiency, and it also helps
eliminate irrelevant candidates as integer relations satisfied
by objects in vicinity to one another are more likely to be
meaningful for the purpose of our evalutions.

Additionally, to filter out relations that may have been
satisfied by numerical coincidence, we require all relations
to be translation-invariant. Specifically, for each subset, we
sample a noise p from uniform distribution U(—1, 1) and
apply the PSLQ algorithm to {¢1 + w, ..., t, + u}. We re-
peat the process 10 times and only deem a subset to have
a valid relation if the algorithm succeeds for all 10 times.

This helps the metric to focus on regularities with respect
to the relative positions instead of the absolute positions of
objects.

In Fig 6, we demonstrate that with these two filtering
mechanisms, our metric is still meaningful for » = 5 and
potentially larger parameters, which would be useful for
measuring wider ranges of regularities. We also show that
averaging all the integer relation metrics across the vari-
ous settings suggest more general notions of regularity, for
which LEGO-Net outperforms the ATISS variants.

G. Failure Modes

While LEGO-Net generates unprecedented-quality in-
door scenes through the iterative denoising process, we no-
tice that it often suffers from objects going out of the floor
boundaries and objects penetrating each other. These failure
modes are illustrated in Fig. 7 and 8. In fact, in Tab 1, we
measure that around half of living room realizations have at
least one object outside of the boundaries.

We propose two possible remedies for these related is-
sues. First, we could apply post-processing steps to phys-



Figure 7. Failure modes. While LEGO-Net generates high-quality
scenes, it often exhibits the two failure modes of placing objects
outside of the floor plan boundaries (red ellipse) and inducing pen-
etration between objects (blue ellipse). We leave post-processing
steps to resolve these issues as future work.

ically resolve the two problems. That is, we optimize the
locations of the objects within the scene such that pene-
trations and out-of-boundary issues are resolved with mini-
mal required movement. We believe a possible formulation
would involve a signed distance function (SDF), with which
it is easy to compute the gradient to minimize the penetra-
tions. When a point lies on the negative territory of another
shape’s SDF, we can optimize the location of that point out
towards the SDF’s gradient directions.

Secondly, one can consider richer encoding of the floor
plan. One possibility is to encode each line segment of the
floor plan separately as a token. This will essentially treat
each line segment as an object in the scene and could en-
force stricter constraints on the boundaries. At a glance, this
strategy might increase the computational cost significantly,
due to the quadratic nature of Transformer time complexity.
However, one could consider limiting the communication
between the line segment tokens to prevent quadratic scal-
ing of the complexity.

We leave these two potential remedies for our failure
modes as future work.

H. Future Work

In this work, we introduced LEGO-Net, an iterative-
denoising-based method for tackling scene rearrangement
task, which is relatively understudied compared to the scene
synthesis task. We show through extensive experiments
that our method is able to capture regularities of complex
scenes, generating high-quality object rearrangements that
could not be achieved by existing approaches to date.

However, LEGO-Net in its current form only operates
on a 2D plane for the rearrangement. Extending our work
to operate on the SE(3) transformation space would make
it more applicable to real-world scenes. A significant bar-
rier to achieving 3D rearrangement is the lack of data. We

notice that most of the indoor scene arrangement datasets
deal with objects laid on the floor plan, which could limit
the progress of studying SF(3) scene arrangements. De-
signing and collecting such a dataset, e.g., small objects on
top of one another is an interesting future direction.

Moreover, the trajectories generated during the denois-
ing process of LEGO-Net are not meant to respect physi-
cal constraints, e.g., penetrations and collisions. We find
that enforcing the physical constraints during the denoising
steps could significantly limit the space of possible scene
rearrangement. Currently, if one wants to move objects in
a scene according to the initial and final states of our algo-
rithm, one needs to run a motion planning algorithm. Ex-
tending our work to output motion plans, along with the
final states, is worth pursuing.

Finally, LEGO-Net has only been shown to work well
on relatively small room-scale scenes. Extending our work
to operate on larger-scale scenes such as warehouses might
require changes to some of our architecture choices, in-
cluding strengthening translational invariance. Exploring
such strategies remains an understudied challenge, which
we continue to explore.
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Ground Truth Messy Scene Atiss-failure-correction Ours

Figure 8. Additional demonstrations of failure modes of our method. In the top row, note that two chairs are missing due to perfect collision
of their position predictions with those of the other chairs. In the bottom row, the cabinet is placed outside of the floor boundaries.
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Ground Truth Messy Scene Our Rearrangement

Figure 9. Additional rearrangement results of LEGO-Net on the 3D-FRONT dataset.
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