
Supplementary Material - Behind the Scenes: Density Fields for Single View
Reconstruction

Felix Wimbauer1,2 Nan Yang1 Christian Rupprecht3 Daniel Cremers1,2,3
1Technical University of Munich 2MCML 3University of Oxford
{felix.wimbauer, nan.yang, cremers}@tum.de chrisr@robots.ox.ac.uk

Project page & Code: fwmb.github.io/bts

1. Ethics

This research uses datasets (KITTI [3], KITTI-360 [8],
and RealEstate10K [17]) to develop and benchmark com-
puter vision models. The datasets are used in a manner
compatible with their terms of usage. Some datasets the
images can contain visible faces and other personal data
collected without consent, however there is no process-
ing of biometric information. Images are CC-BY or used
in a manner compatible with the Data Analysis Permis-
sion. We do not process biometric information. Please
see https://www.robots.ox.ac.uk/˜vedaldi/
research/union/ethics.html for further informa-
tion on ethics and data protection rights and mitigation.

2. Limitations

As the model makes predictions from a single frame, it
can only rely on priors to predict visible and invisible parts
of the scene. Naturally, it should thus not be used in safety-
critical applications, nor outside of a research setting.

As the model is sampling colors instead of predicting
them, it cannot predict plausible colors for unseen objects.
Thus, in the setting of novel view synthesis, extreme camera
pose changes tend to lead to visible artifacts in the images.

Similar to self-supervised depth prediction methods, our
loss formulation relies on photometric consistency. View-
dependent effects are not modeled explicitly and could
therefore introduce noise in the training process.

Further, our loss formulation relies on a static scene as-
sumption and dynamic objects are not modeled explicitly.
While this has the potential to reduce accuracy, there are
several reasons why it only has marginal effect in our case.
1. In most cases, we have stereo frames available, which
give accurate training signals, even for moving objects. 2.
The time difference between the different views is very
small (usually in the order of 0.1 seconds. Therefore, even
if an object is moving, the introduced noise is rather small.

Nonetheless, it would be an interesting direction for future
work to investigate explicit modelling of dynamic objects in
a loss formulation like ours.

3. Additional Results
In the following, we show additional results for novel

view synthesis, capturing true 3D, and depth prediction.
Please also see the video for additional qualitative results
and explanations. Figures can be found after the text of the
supplementary material.

3.1. Novel View Synthesis

Fig. 4 shows qualitative results from the Tulsiani [13]
test split for KITTI [3]. Fig. 5 shows qualitative results for
the test set of RealEstate10K [17] proposed by MINE [7].

3.2. Capturing True 3D

Fig. 6 shows further visualizations of the predicted den-
sity field, in which you can clearly make out the different
objects in the scene in the top-down view.

3.3. Depth Prediction

Fig. 7 shows further results comparing our expected ray
termination depth with results from other depth prediction
methods. Tab. 2 reports additional metrics to the table in the
main paper.

4. Technical Details
In the following, we discuss the exact implementation

details, network configurations, and training setup, so that
our results can be reproduced easily. Further, we provide
further details regarding the computation of the occupancy
metrics.

4.1. Implementation Details

We base our implementation on the official code repos-
itory published by [15]. Further, we are inspired by the

1

https://fwmb.github.io/bts
https://www.robots.ox.ac.uk/~vedaldi/research/union/ethics.html
https://www.robots.ox.ac.uk/~vedaldi/research/union/ethics.html

repository of [4] regarding the implementation of the image
reconstruction loss functions.

Networks. For encoder, we use a ResNet-50 [6] backbone
pretrained on ImageNet. We rely on the official weights
provided by PyTorch [11] / Torchvision. As decoder, we
follow the architecture of MonoDepth2 [4] with a minor
modification. Since we output feature maps with C chan-
nels at the same resolution of the input, we do not reduce
the features during upconvolutions below C to prevent in-
formation loss. Concretely for every layer, we have an out-
put channel dimension of Ĉout = max(C,Cout), where Cout
is the output channel dimension of the MonoDepth2 model.
We found C = 64 to give best results.

For the decoding MLP, we use two fully-connected lay-
ers with hidden dimension C (same as the feature dimen-
sion) and ReLU activation function. We found that more
layers do not improve the quality of the reconstruction. Our
hypothesis is that the decoding is a simple task that does not
require a network with high capacity.

Rendering. To obtain a color / expected ray termination
depth for a given ray, we sample S points between znear and
zfar. As we deal with potentially unbounded scenes with
many different scales, we use inverse depth to obtain the
ranges for the different parts. For every range, we uniformly
draw one sample. Let di be the depth step for the i-th point
(i ∈ [0, S − 1]) and r ∼ U [0, 1] a random sample from the
uniform distribution between 0 and 1.

di = 1/

(
1− si
znear

+
si
zfar

)
, si =

i+ r

S
(1)

We also experimented with coarse and fine sampling
as used in many NeRF papers (e.g. [10, 15]). Here, after
sampling the entire range of depths as above (coarse sam-
pling), we perform importance sampling based on the re-
turned weights and sampling around the expected ray termi-
nation depth (fine sampling). Further, we also duplicate the
MLP: one for coarse and one for fine sampling. While the
outputs of both networks are used for two seperate recon-
structions with separate losses, only the fine reconstruction
results are used for evaluation. This technique is particu-
larly helpful in NeRFs to increase the visual quality. While
the coarse MLP has to model the density and color distribu-
tion for a big range of coordinates, the fine MLP only has to
learn the relevant area around surfaces. In our experiments,
we found that we do not get any benefit from adding fine
sampling, both when using two seperate MLPs or one for
coarse and fine sampling. We suspect that our single MLP
already has enough capacity to model the density distribu-
tion (we do not model color with the MLP) described by the
feature at sufficient accuracy.

Dataset Split #Train #Val. #Test

KITTI [3] Eigen [2] 39.810 4.424 697
Tulsiani [13] 11.987 1.243 1.079

KITTI-360 [8] Ours 98.008 11.451 446

RealEstate10K [17] MINE [7] 8.954.743 245 3270

Table 1. Dataset Overview. Different datasets used in this work
with information on data split. Our KITTI-360 split is a modified
version of the split for the image segmentation task.

Positional Encoding. As described in the main paper, we
pass di and u′

I (pixel coordinate) values through a posi-
tional encoding function, before feeding them to the net-
work along side the sampled feature fu′

I
. This positional

encoding functions maps the input to sin and cos functions
with different frequencies. This is an established practice
in methods where networks have to reason about the spatial
location of points in 2D or 3D [10, 15]. As we deal with
real-world scale of scenes, we first normalize the depth to
[−1, 1]. This ensures that the data-range perfectly matches
the used frequencies. u′

I uses normalized pixel coordinates
with u′

I ∈ [−1, 1]2 already. For a vector, we compute the
positional encoding per element as:

γ(x) = [x, sin(xπ20), cos(xπ20), sin(xπ21), cos(xπ21),

. . . , sin(xπ26), cos(xπ26)]

(2)

4.2. Training Configuration

Through preliminary experiments, we found that the fol-
lowing training configuration yields the best results:

In all of our experiments, we use a batch size of 16. In
total, we sample 2048 rays for each item in a batch. These
rays are grouped in 8 × 8 sized patches randomly sampled
from any of the frames in Nloss From this, the loss is com-
puted. Following [4], we set λSSIM = 0.85, λL1 = 0.15 and
λEAS = 0.001∗2. The default learning rate is λ = 10−4 and
we decrease it to λ = 10−5 for the last 20% of the training.
For all trainings, we use color augmentation (same parame-
ters for all views of an item in the batch) and flip augmen-
tation (randomly horizontally flip the image that gets fed
into the encoder-decoder and then flip the resulting feature
maps back to avoid changing the geometry of the scene).
Tab. 1 shows an overview of the different datasets and the
used split. Fig. 1 visualizes the frame arrangement and a
possible partitioning into Nloss and Nrender for the different
datasets.

KITTI. We rely on poses computed from ORB-SLAM
3 [1], which uses the given stereo cameras, intrinsics, and
baseline length. To be consistent with popular depth predic-
tion methods, we perform all trainings and experiments at a

RealEstate10K KITTI KITTI-360

Figure 1. Frame Arrangement per Sample. RealEstate10K only
has monocular sequences. KITTI and KITTI-360 provide stereo.
KITTI-360 also contains fisheye camera frames facing left and
right. Legend: ref. Fig. 3.

resolution of 640× 192 and rely on the Eigen split [2]. For
evaluation, like in most other works, the cut off distance is
set to 80m. The training runs for 50 epochs and we reduce
the learning rate after 100.000 iterations. We report depth
prediction results for our model which was trained with two
timesteps (input + following) and stereo, i.e. four frames in
total. For occupancy estimation, we also train a model with
three timesteps (previous + input + following) and stereo.
Depth prediction results for this model are on par, but not
better than the model trained with two timesteps. A depth
range of znear = 3m and zfar = 80m proved to work best.

On the Tulsiani split [13], we use the same settings,
except that we train for 150 epochs, as the split contains
around 3× fewer samples.

Training in both cases takes around four days.

KITTI-360. As the setting is very similar to KITTI, we
use the same parameters. Because the dataset is signifi-
cantly larger, we only train for 25 epochs. Training again
takes around four days. Additionally to the two stereo
frames, we also have access to fisheye camera pointing left
and right. In order to be able to use them within our imple-
mentation, we resample them based on a virtual perspective
camera with the same parameters as the forward-facing per-
spective cameras. Note that the fisheye cameras seem to
be mounted higher up than the perspective cameras. There-
fore, we rotate the virtual cameras 15◦ downwards along the
x-axis during the resampling process. Further, fisheye and
forward-facing cameras of the same timeframe have barely
any overlapping visible areas. Therefore, we offset fisheye
cameras by 10 timesteps. Fig. 2 shows examples from the
fisheye cameras and the resampled images.

RealEstate10K As RealEstate10K contains magnitudes
more images than KITTI or KITTI-360, approximately 8
mio. for training. Therefore, we define the training length
by the number of iterations, in this case 360k. We follow [7]
and perform all experiments at a resolution of 384 × 256.
We train with three frames (previous + input + following)
per item in the batch. As the framerate is very high, we

Figure 2. Fisheye Resampling. KITTI-360 provides frames from
two fisheye cameras, one facing to the left and one facing to the
right. We resample them based on a virtual perspective camera that
has the same camera intrinsics as the perspective forward-facing
cameras. We rotate the virtual camera 15◦ downward to maximize
the overlap of the frustums with the forward-facing cameras.

randomly draw an offset from the range [1, 30] between the
frames. [17] states that all sequences are normalized to fit
a depth range of znear = 1m and zfar = 100m with inverse
depth spacing. We use the poses provided by the dataset.

4.3. Occupancy Metric

We rely on Lidar scans provided by KITTI-360 to build
ground-truth occupancy and visibility maps, which we then
use to evaluate our prediction quality. Our evaluation pro-
tocol relies on 2D slices parallel to the ground between the
street and the height of the car. This allows to focus on the
interesting regions of the scene, that also contain other ob-
jects like cars and pedestrians, and ignore areas that are not
interesting, like the area below the street or the sky.

Consider now a single input frame, for which we would
like to build our ground-truth occupancy and visibility. As
KITTI-360 is an autonomous driving dataset, the vehicle is
generally moving forward at a steady pace. Thus, consecu-
tive Lidar scans captured a short time later measure differ-
ent areas within the camera frustum. Note that these Lidar
measurements can reach areas that are occluded in the input
image. To determine whether a point is occupied, we check
whether it is in front of the measured surface for any of the
Lidar scans. Intuitively, every Lidar measurement “carves
out” unoccupied areas in 3D space.

Let Li =
{

xj ∈ R3|j ∈ [M]
}

be the Lidar scan i
timesteps after the input frame with M measurement points
in the world coordinate system. L0 denotes the Lidar scan
captured synchronously to the input frame. Let Pi denote
the vehicle-to-world transformation (for ease of notation we
assume that the Lidar scanner is centered at the vehicle pose

and that the input frame has the same pose as the the 0-th
Lidar scan).

3D interpolation with sparse Lidar point clouds is diffi-
cult. Therefore, we extract slices from the scan pointclouds
and project them onto a 2D plane. Additionally, we convert
every point from Cartesian coordinates to polar coordinates,
centered around the origin of the respective Lidar scan. This
makes the measurements much more dense and evaluation
of whether a point is in front or behind a surface easier.

Let ymin, ymax describe the min and max y-coordinate for
our slice. polxz(x) → (α, d) denotes a function to convert
a Cartesian coordinate to a polar coordinate after projecting
it onto the xz-plane.

Si =
{

polxz(xj)|xj ∈ Li ∧ ymin ≤ xy
j ≤ ymax

}
(3)

For a given Lidar scan, we can now check whether a
point x is in front or behind the measured surface by trans-
forming it into the scan’s coordinate system, converting it
to polar coordinates and then comparing the distance. How-
ever, experiments showed that the Lidar scans in KITTI-360
can be fairly noisy, especially for objects like cars, that have
translucent or reflective materials. Oftentimes, single out-
lier points are measured to be at a much bigger distance. As
we rely on the “carving out” idea, such points would carve
out a lot of free space and lead to inaccurate occupancy
maps. To filter out these outliers, we split the 360 degree
range of the polar coordinates into b = 360 equally sized
bins and assign every measured point to the corresponding
bin. For every bin Si[α], we then choose the minimal mea-
sured distance.

Using the Si, we now define a function that allows to
check whether a point is occupied or not. Note that we can
obtain the two closest bins for a given angle α through the
floor and ceil functions.

α, d = polxz(P
−1
i x)

αl, αr = ⌊α⌋ , ⌈α⌉

δ =
α− αl

αr − αl

is freei(x) = d < ((1− δ)Si[αl] + δSi[αr])

(4)

We then accumulate several timesteps i ∈ [0, N − 1] to
build a ground-truth occupancy map. In practice, we con-
sider N = 20 timesteps.

occ(x) = ¬

 ∨
i∈[0,N]

is freei(x)

 (5)

Similarly, we determine visibility by only considering the
Lidar scan corresponding to the input frame:

vis(x) = ¬is free0(x) (6)

Lidar GT Ours PixelNeRF Lidar GT Ours PixelNeRF

Figure 3. Occupancy Metric on KITTI-360. Visualization of
the 1. occupancy ground-truth accumulated from 20 Lidar scans,
2. predicted occupancy map by our model, and 3. predicted occu-
pancy map by PixelNeRF [15].

Based on these functions, we can compute the final met-
ric results. We consider a point x to be occupied, if the
predicted density is over a threshold: σx > 0.5. Let
xi, i ∈ [1, Npts] be points we sample from the camera frus-
tum. Let X¬vis = {i ∈ [1, Npts]|¬vis(xi)} be the sub-
set of points that are invisible, and X¬vis∧¬occ = {i ∈
[1, Npts]|¬vis(xi) ∧ ¬occ(xi)} be the subset of points that
are invisible and empty.

Oacc =
1

Npts

Npts∑
i=1

(occ(x) == (σx > 0.5)) (7)

IEacc =
1

|X¬vis|
∑

i∈X¬vis

(occ(x) == (σx > 0.5)) (8)

IErec =
1

|X¬vis∧¬occ|
∑

i∈X¬vis∧¬occ

(σx < 0.5) (9)

We sample 2720 points in total, uniformly spaced
from a cuboid with dimensions x = [−4m, 4m], y =
[0m, 1m], z = [3m, 20m] (y-axis facing downward). This
means that all points are just above the surface of the street.
Fig. 3 shows examples of the evaluation for two samples.
Evaluation code will be included in the code release.

5. Additional Considerations
In this section, we discuss hypotheses on the working

principles of our proposed approach, for which we do not
have immediate experimental results.

Training Stability. Contrary to many NeRF-based meth-
ods, we find that our proposed approach offers stable train-
ing and that it is not overly sensitive to changes in hyper-
parameters. We hypothesize, that this is due to the nature
of color sampling, which shares similarities with classical
stereo matching. When casting a ray and sampling the color
from a frame, the sampling positions will lie on the epipolar

line. The best match on this epipolar line, which would be
the desired correspondence point in stereo matching, will
give the smallest loss and a clear training signal. This is
even the case when sampling color from a single or very few
frames. In contrast, with a NeRF formulation, the color gets
learned when multiple rays with the same color go through
the same area in space. Therefore, here we require many
views to give a meaningful signal.

Reconstruction Quality. One of the key advantages of
NeRF-based methods is that they offer a great way to aggre-
gate the information from many frames that see the same ar-
eas of a scene. In our formulation, color is only aggregated
through the min operation in the loss term. In a setting with
many views, NeRF would clearly provide better reconstruc-
tion quality than a density field with color sampling.

However, in settings, where there are only few view
scenes per scene available, most areas in the scene have
very limited view coverage. This means, that the aggre-
gation aspect of NeRFs becomes much less relevant and the
”visual expressiveness” of NeRFs and density fields with
color sampling converge.

6. Visualizations
Assets for Fig. 2 were taken from Blendswap12 under the

CC-BY license.

References
[1] Carlos Campos, Richard Elvira, Juan J Gómez Rodrı́guez,

José MM Montiel, and Juan D Tardós. Orb-slam3: An accu-
rate open-source library for visual, visual–inertial, and mul-
timap slam. IEEE Transactions on Robotics, 37(6):1874–
1890, 2021. 2

[2] David Eigen, Christian Puhrsch, and Rob Fergus. Depth map
prediction from a single image using a multi-scale deep net-
work. Advances in neural information processing systems,
27, 2014. 2, 3, 6, 9

[3] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel
Urtasun. Vision meets robotics: The kitti dataset. The Inter-
national Journal of Robotics Research, 32(11):1231–1237,
2013. 1, 2

[4] Clément Godard, Oisin Mac Aodha, Michael Firman, and
Gabriel J Brostow. Digging into self-supervised monocular
depth estimation. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pages 3828–3838,
2019. 2, 6, 9

[5] Vitor Guizilini, Rares Ambrus, Sudeep Pillai, Allan Raven-
tos, and Adrien Gaidon. 3d packing for self-supervised
monocular depth estimation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 2485–2494, 2020. 6

1https://blendswap.com/blend/18686
2https://blendswap.com/blend/13698

[6] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 2

[7] Jiaxin Li, Zijian Feng, Qi She, Henghui Ding, Changhu
Wang, and Gim Hee Lee. Mine: Towards continuous depth
mpi with nerf for novel view synthesis. In Proceedings of
the IEEE/CVF International Conference on Computer Vi-
sion, pages 12578–12588, 2021. 1, 2, 3, 6, 9

[8] Yiyi Liao, Jun Xie, and Andreas Geiger. Kitti-360: A novel
dataset and benchmarks for urban scene understanding in 2d
and 3d. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2022. 1, 2

[9] Chenxu Luo, Zhenheng Yang, Peng Wang, Yang Wang, Wei
Xu, Ram Nevatia, and Alan Yuille. Every pixel counts++:
Joint learning of geometry and motion with 3d holistic un-
derstanding. IEEE transactions on pattern analysis and ma-
chine intelligence, 42(10):2624–2641, 2019. 6

[10] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. Communications of the ACM, 65(1):99–106, 2021.
2

[11] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,
Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-
son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An
Imperative Style, High-Performance Deep Learning Library.
In Advances in Neural Information Processing Systems 32,
pages 8024–8035. Curran Associates, Inc., 2019. 2

[12] Chang Shu, Kun Yu, Zhixiang Duan, and Kuiyuan Yang.
Feature-metric loss for self-supervised learning of depth and
egomotion. In European Conference on Computer Vision,
pages 572–588. Springer, 2020. 6, 9

[13] Shubham Tulsiani, Richard Tucker, and Noah Snavely.
Layer-structured 3d scene inference via view synthesis. In
Proceedings of the European Conference on Computer Vi-
sion (ECCV), pages 302–317, 2018. 1, 2, 3, 6, 9

[14] Jamie Watson, Michael Firman, Gabriel J Brostow, and
Daniyar Turmukhambetov. Self-supervised monocular depth
hints. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pages 2162–2171, 2019. 6

[15] Alex Yu, Vickie Ye, Matthew Tancik, and Angjoo Kanazawa.
pixelnerf: Neural radiance fields from one or few images.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 4578–4587, 2021. 1,
2, 4, 6

[16] Kaichen Zhou, Lanqing Hong, Changhao Chen, Hang Xu,
Chaoqiang Ye, Qingyong Hu, and Zhenguo Li. Devnet:
Self-supervised monocular depth learning via density vol-
ume construction. arXiv preprint arXiv:2209.06351, 2022.
6, 9

[17] Tinghui Zhou, Richard Tucker, John Flynn, Graham Fyffe,
and Noah Snavely. Stereo magnification: Learning
view synthesis using multiplane images. arXiv preprint
arXiv:1805.09817, 2018. 1, 2, 3

https://blendswap.com/blend/18686
https://blendswap.com/blend/13698

Input Image Predicted Novel View Target View

Figure 4. Novel View Synthesis on KITTI. Rendering the right stereo frame based on the density field predicted from the left stereo
frame. Colors are also sampled from the same frame we make the prediction from. Areas of the image that are not occluded in both the
input and target frame are reconstructed very accurately.

Model Volumetric Split Abs Rel Sq Rel RMSE RMSElog α < 1.25 α < 1.252 α < 1.253

PixelNeRF [15] ✓

Eigen [2]

0.130 1.241 5.134 0.220 0.845 0.943 0.974
EPC++ [9] ✗ 0.128 1.132 5.585 0.209 0.831 0.945 0.979
MonoDepth 2 [4] ✗ 0.106 0.818 4.750 0.196 0.874 0.957 0.975
PackNet [5] ✗ 0.111 0.785 4.601 0.189 0.878 0.960 0.982
DepthHint [14] ✗ 0.105 0.769 4.627 0.189 0.875 0.959 0.982
FeatDepth [12] ✗ 0.099 0.697 4.427 0.184 0.889 0.963 0.982
DevNet [16] (✓) 0.095 0.671 4.365 0.174 0.895 0.970 0.988

Ours ✓ 0.102 0.751 4.407 0.188 0.882 0.961 0.982

MINE [7] ✓ Tulsiani [13] 0.137 1.993 6.592 0.250 0.839 0.940 0.971
Ours ✓ 0.132 1.936 6.104 0.235 0.873 0.951 0.974

Table 2. Depth Prediction on KITTI. While our goal is full volumetric scene understanding, we compare to state-of-the-art self-supervised
depth estimation method. Our approach achieves competitive performance while clearly improving over other volumetric approaches like
PixelNeRF [15] and MINE [7]. DevNet [16] performs better, but does not show any results of their volume.

Input Image Predicted Novel View Target View Predicted Novel View Target View

Offset: 5 Frames Offset: 30 Frames

Figure 5. Novel View Synthesis on RealEstate10K. Rendering a later frame based on the density field predicted from the input frame.
Colors are also sampled from the same frame we make the prediction from.

Figure 6. Occupancy Estimation. More qualitative top-down visualization of the occupancy map predicted by different methods. We
show an area of x = [−15m, 15m], z = [5m, 30m] and aggregate density from the y-coordinate of the camera 1m downward.

M
on

oD
ep

th
 2

Fe
at

D
ep

th
R

-M
SM

F
3

R
-M

SM
F

6
D

ev
N

et
O
ur
s

Ei
ge

n
Sp

lit

M
IN

E
O
ur
s Tu

ls
ia

ni
 S

pl
it

Figure 7. Depth Prediction. Additional visualizations of the expected ray termination depth compared with depth prediction results
of other state-of-the-art methods [4, 7, 12, 16] on both the Eigen [2] and [13] split. Visualizations for DevNet and FeatDepth are taken
from [16].

	. Ethics
	. Limitations
	. Additional Results
	. Novel View Synthesis
	. Capturing True 3D
	. Depth Prediction

	. Technical Details
	. Implementation Details
	. Training Configuration
	. Occupancy Metric

	. Additional Considerations
	. Visualizations

