
Differentiable Shadow Mapping for Efficient Inverse Graphics
Supplementary Material

Markus Worchel Marc Alexa

TU Berlin

1. Implementation and Renderer Details
We implemented our method in Python, on top of the au-

tomatic differentiation framework PyTorch [13] and use the
differentiable rasterization primitives by Laine et al. [10] as
foundation for our renderer. Our rendering pipeline follows
a deferred shading architecture [4], so we first rasterize the
scene geometry and then perform a shading pass that com-
putes the light-material interaction. This architecture allows
us to consider an arbitrary number of lights. Currently, all
surfaces use a BRDF (bidirectional reflectance distribution
function) with only the Lambert diffuse term but an exten-
sion to more physically-based material models, like the Dis-
ney “principled” BRDF [3] or variants of it [7, 9], is trivial.

For rendering the shadow maps, we use the same raster-
ization primitives as for the primary camera. The camera
built for each light depends on the light type: (1) a direc-
tional light uses a camera with orthographic project that is
placed far outside of the scene, facing the origin from the
specified direction; (2) a spot light uses a camera that is
placed at its position, facing the desired direction, and using
a perspective projection with a configurable field of view.

2. Experiment Details
Our scenes are roughly centered at the origin and after

loading 3D models, we scale them to the [−1, 1]3 cube. This
allows us to use consistent near and far planes across exper-
iments, both for the frusta of the actual cameras and the
frusta of the light cameras.

For all experiments – except those explicitly stating oth-
erwise – we use a shadow map resolution of 256× 256. We
implement two filters for pre-filtering the shadow map: a
box filter and a Gaussian filter. We use both filters in the
experiments, usually with kernel size k = 3 or k = 5.
The Gaussian filter produces more pleasing visual results
whereas using the box filter is a little faster. Generally, we
observed robustness to the exact choice of filter.

Convergence and Jacobian Experiments. We use a
“minimal plane” setup for the convergence and Jacobian

experiments, consisting of a single planar shadow receiver
and a single planar occluder (both parallel), illuminated by
a directional light orthogonal to them. The camera that pro-
duces the shadow images used for optimization is located
between the receiver and the occluder, focusing the receiver.
The highly tessellated and slightly rotated occluder that we
use for computing the Jacobian has 130,000 faces. For the
simple experiment that investigates the effect of shadow
map filtering on the convergence, we displace the occluder
horizontally and the goal of the optimization is to recover
the original position, only by using the shadow images.

Light Direction Estimation. The experiment of light di-
rection estimation has the following general setup: an ob-
ject is placed on a rectangular floor plane and illuminated
by n directional lights. We render a reference image with a
fixed camera that observes the object. The goal of the opti-
mization is to recover the target light directions from some
initial state, only by comparing the rendered image to the
target image.

We run the experiment for 6 objects in total. For each pa-
rameter setting (e.g. filter size) we perform 150 runs of the
experiment, with randomized target and initial conditions.
We ensure that these configurations are deterministic, so –
as an example – the optimizations for filter size k = 3 and
k = 15 use the same set of 150 configurations. The aver-
age accuracy is computed as an average over the 6 objects
and 150 runs; our error bounds are based on the standard
deviation, respectively.

The accuracy (alignment) is computed as follows: Given
the n target light directions {li} and the estimated light di-
rections {lopt

j }, we first perform a greedy matching between
both sets, trying to maximize the dot product li ·lopt

ki
between

a direction i and its match ki. Note that this mapping is
bijective, so there is a one-to-one correspondence between
directions. We then compute the alignment as the average
dot product over all directions:
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Figure 1. General setup of the face reconstruction experiment. The
face model is placed in front of a planar shadow receiver and the
camera (blue) is placed between them, focusing the receiver (left).
For the experiments with three shadows, we add two additional
lights with small horizontal offsets (middle, right).

Monocular Pose Estimation. The general setup for the
pose estimation application is as follows: the scene consists
of a single planar receiver that is illuminated by a directional
light orthogonal to it. The object whose pose we wish to re-
cover is placed in front of the receiver, such that it casts a
shadow. For each optimization run, we first randomly offset
the object in the plane parallel to the receiver and randomly
rotate it around its up-axis (the random offsets and rotations
are deterministic). Then, we recover the original pose in an
optimization, which compares rendered images to a refer-
ence image that shows the object without offset or rotation.
The camera is located at a position where it sees both the
object and the shadow receiver plane.

We use Mitsuba 3 [6] for creating the reference images
and as a baseline in the optimization. Since Mitsuba 3 does
not support differentiation for directional lighting, we use a
far-away, rectangular area light as a proxy in the optimiza-
tion. We calibrate this proxy to match the directional light.
In our experiments, timings for Mitsuba 3 showed no no-
ticeable dependence on the choice of emitter.

We use ADAM [8] for the optimization, with a step size
of 0.01 and β1 = 0.9, β2 = 0.999 and run 150 iterations.

Face Reconstruction from Profile Shadows. The basic
setup for face reconstruction is similar to that of pose esti-
mation: a single planar shadow receiver is illuminated by a
directional light orthogonal to it. The head model is placed
in front of the plane so that is casts a shadow. However, here
the camera is located between the head and the receiver, fo-
cusing the receiver (see Figure 1). For the setup with three
shadows, we add two additional directional lights.

We use artificial geometry to evaluate the quality of our
fit quantitatively. When computing the geometric distance
between the reference geometry and our prediction, we only
compare the meshes from the neck upwards, because the
shadow of the upper torso is not included in the optimiza-

tion.
In the experiment that uses silhouette images of real pub-

lic figures, we first scale the images and align them roughly
with the shadow observed by the camera in our scene. We
also optimize the translation of the head model to reduce the
effect of small inaccuracies in this alignment.

We use ADAM [8] with a step size of 0.01 for the trans-
lation and a step size of 0.2 for the identity weights used by
the morphable face model, both with β1 = 0.9, β2 = 0.999.
We run the optimization for 400 iterations.

Shadow Art. The basic shadow art setup is again simi-
lar to the setup for face reconstruction and pose estimation:
a single shadow receiver illuminated by an orthogonal di-
rectional light with the geometry that is optimized in front
of the plane. The experiments with two views use a sec-
ond shadow receiver that is placed orthogonal to the first
one, illuminated by a second directional light orthogonal to
it (see Figure 2). For each receiver plane, we place an or-
thographic camera between the object and the plane: these
are the cameras producing the shadow images used in the
optimization.

In selected experiments, we use a perspective camera
that observes the receiver plane from the side, demonstrat-
ing that light rays and view rays do not need to coincide
with our framework. We also replace the planar shadow re-
ceiver with a curved receiver to show that the receiver does
not necessarily need to be flat. In our demo code, we in-
clude a shadow art sample, which reproduces these settings
for a single view.

The shadow art experiments that deform a mesh start
with a sphere of 12,800 triangles and finish in roughly
15 seconds for each object. We run 400 iterations with
ADAM [8], using a step size of 0.2, β1 = 0.9, β2 = 0.999,
λ = 20 for gradient preconditioning [12], and a weight of
0.2 for the normal consistency regularization.

The shadow art experiments that optimize the transla-
tions, scales, and rotations of an object collection initially
start with one instance of the object and duplicate the num-
ber of objects every 150 iterations (each object spawns two
objects with small offsets to avoid interpenetration). We run
1100 iterations with ADAM [8], using a step size of 0.005,
β1 = 0.9, β2 = 0.999.

Interactive Modeling from Shadows. The interactive
modeling setup is equivalent to the one-view shadow art
setup. In contrast to shadow art, the intend here is to modify
an existing model based on user interaction with the shadow
image. We first load an input mesh, generate a shadow im-
age from the unmodified mesh, and write the image to the
disk. The optimization loop then reads back this shadow
image in each iteration and uses it as a target image to drive
the model deformation.



Figure 2. Shadow art setup for one view (left) and two views
(right), with a reference object.
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Figure 3. We use a morphable face model that allows controlling
the face identity and the expression. We optimize both (top row)
and only the expression (bottom row) based on the shadows cast
by the model.

3. Additional Results

Monocular Pose Estimation. Table 1 contains the quan-
titative results for all resolutions (1282, 5122, 10242) as
well as time measurements per iteration. We can perform
approximately 70 (1282), 40 (5122), and 20 (10242) opti-
mization steps per second, which allows following the opti-
mization in real-time.

Face Reconstruction from Profile Shadows. Table 2
contains the quantitative results for four artificial faces mod-
els. In the main paper, we only optimize the identity weights
of the morphable face model, which effectively determine
the fundamental shape of the face. We also experimented
with optimizing the identity and expression as well as only
the expression, while keeping the identity fixed (see Fig-
ure 3). The latter might be useful if the shape of the head is
known (e.g. because it was scanned previously) and the task
is to recover facial expressions using shadows, for example
in the context of face motion capture.

Figure 4. Shaded image (left) and visibility (right) with visible
light bleeding artifact.

4. Limitation: Light Bleeding
It is well known that Variance Shadow Maps [5] – our

particular choice of pre-filtered shadow maps – suffer from
light bleeding in regions with high depth variance (see Fig-
ure 4). While we noticed no immediate impact in our ex-
periments, it might be desirable to reduce light bleeding
by using heuristics [11] or implementing other pre-filtered
shadow maps [1, 2, 14] in our framework.
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Table 1. Quantitative results for the pose estimation experiments for different scenes and resolutions. We measure the rotation error ∆φ,
the translation error ∆t, the total runtime, and runtime per iteration, averaged over ten runs. We include results for a GPU with ray-tracing
cores (“RT”) and for a setting where we use our renderer as reference (“Our Ref.”). Best scores in bold, second best scores underlined.

Mitsuba 3 [6] Rasterizer + Shadows (Ours) Rasterizer

↓ ∆φ[◦] ↓ ∆t ↓ time [s] (/it) ↓ ∆φ[◦] ↓ ∆t ↓ time [s] (/it) ↓ ∆φ[◦] ↓ ∆t ↓ time [s] (/it)

128× 128

Bunny 0.31 0.05 54.13 (0.361) 0.69 0.27 2.27 (0.015) 3.04 5.56 1.06 (0.007)
Dragon 2.78 4.01 52.46 (0.349) 3.32 3.94 2.09 (0.014) 8.01 14.31 1.03 (0.007)
Hand 1.44 5.24 53.17 (0.354) 3.66 4.02 2.08 (0.014) 6.80 12.42 1.03 (0.007)
Spot 0.02 0.11 58.19 (0.388) 7.40 12.83 2.11 (0.014) 12.47 44.70 1.05 (0.007)

512× 512

Bunny 0.23 0.10 325.29 (2.168) 0.33 0.22 3.76 (0.024) 0.31 0.26 1.58 (0.009)
Dragon 2.86 3.91 306.46 (2.043) 3.32 4.53 3.64 (0.023) 8.02 11.63 1.54 (0.009)
Hand 1.41 5.18 317.40 (2.116) 1.68 5.36 3.66 (0.023) 1.85 5.66 1.51 (0.009)
Spot 0.03 0.02 381.80 (2.545) 0.05 0.05 3.76 (0.023) 5.80 23.15 1.77 (0.010)

Spot (RT) 0.03 0.02 53.26 (0.354) 0.05 0.05 1.93 (0.012) 6.92 21.52 1.05 (0.006)
Spot (Our Ref.) 0.05 0.12 384.24 (2.561) 0.02 0.06 3.60 (0.022) 5.83 23.12 1.71 (0.010)

1024× 1024

Bunny 0.22 0.12 1245.60 (8.304) 0.31 0.21 7.72 (0.047) 0.33 0.25 3.71 (0.021)
Dragon 2.86 3.87 1151.74 (7.678) 3.22 4.48 7.53 (0.046) 7.85 11.48 3.18 (0.018)
Hand 1.42 5.38 1200.74 (8.005) 1.61 5.43 7.72 (0.048) 1.76 5.66 3.13 (0.018)
Spot 0.03 0.03 1441.56 (9.610) 0.03 0.04 7.64 (0.046) 2.58 3.93 3.19 (0.017)

Table 2. Quantitative results for face reconstruction from shadows,
using artificial head geometry generated with a morphable face
model. Best scores in bold.

1 Shadow 3 Shadows

Face ID ↓ Dmean ↓ DHausdorff ↓ time [s] (/it) ↓ Dmean ↓ DHausdorff ↓ time [s] (/it)

1 0.011 0.114 18.86 (0.047) 0.006 0.066 27.11 (0.068)
6 0.012 0.108 19.00 (0.048) 0.010 0.106 27.32 (0.068)
8 0.014 0.129 19.36 (0.048) 0.007 0.054 27.37 (0.068)
131 0.014 0.069 18.09 (0.045) 0.008 0.046 27.46 (0.069)

mean 0.013 0.105 18.83 (0.047) 0.008 0.068 27.32 (0.068)
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