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1. More Implementation Details
1.1. Model Details

We adopt DGCNN [8] as the backbone network to ex-
tract local geometric information, which contains 3 Edge-
Conv layers and 3 downsampling layers. In the target-
centric transformer, all shared MLPs for targetness mask
prediction and target center regression have 4 linear layers,
each of which is followed by BatchNorm [5] and ReLU [1].

1.2. Training & Inference

We train our model using the Adam optimizer [6] with
an initial learning rate of 10−3. The learning rate is reduced
to 1/5 every 40 epochs. The batch size is empirically set to
128. During inference, the model tracks the target frame-
by-frame using the previous predicted bounding box, with
the bounding box of the first frame known as ground truth.

1.3. Data Augmentation

For the SOT task, the network only needs to consider a
sub-region of the whole scene where the tracking target may
appear. For training, we enlarge the ground truth bounding
box by 2 meters to obtain the sub-region. We then sam-
ple 1024 points inside the region to generate the input point
clouds Pt−1 and Pt. To simulate the inaccurate predic-
tions during inference, we augment the input 3D bounding
box Bt−1 by performing random translation with a range of
[−0.3m, 0.3m] in all directions as well as random rotation
around the up-axis.

2. Ablation Study
2.1. Numbers of Layers and Heads

To explore the impact of the number of layers NL and
the number of attention heads h, we conduct experiments
and report the results in Tab. 1. We observe no signifi-
cant performance gains from using more than 4 layers and 1
head, but at the cost of more parameters and lower inference
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Table 1. Ablation studies of the number of layers and the num-
ber of attention heads on KITTI. NL is the number of trans-
former layers. h denotes the number of attention heads.

NL h Car Pedestrian Van Cyclist Mean
3 1 67.1/79.3 64.4/90.5 53.9/64.5 72.0/93.5 64.9/83.1
4 1 69.1/81.6 67.0/91.5 60.0/71.8 74.2/94.3 67.5/85.3
5 1 68.8/79.7 65.2/89.9 59.4/70.9 73.6/94.3 66.5/83.7
3 2 68.7/80.2 65.0/90.4 55.3/65.1 72.9/93.7 66.0/83.6
4 2 69.4/80.5 65.0/89.6 57.1/71.2 73.5/94.1 66.5/83.9

speed. Thus we set NL = 4 and h = 1 for higher efficiency
and better performance.

2.2. Hyper-parameter Selection

Table 2. Ablation studies of different hyper-parameters on
KITTI.

1
σ2 γ1 γ2 γ3 Pedestrian
0.1 0.2 10.0 1.0 67.0/91.5
0.07 63.5/89.5
0.13 65.9/89.7

0.1 65.3/90.6
0.3 66.0/90.3

1.0 59.4/87.6
20.0 65.4/90.4

0.5 66.3/90.8
2.0 65.5/90.2

We change one hyper-parameter each time and fix oth-
ers for fair comparison. As shown in Tab. 2, except for
γ2 = 1.0, CXTrack only has a minor improvement com-
pared with other settings, which demonstrates the robust-
ness to hyper-parameter selection. X-RPN distinguishes
points of interest using target center predictions. In the case
γ2 = 1.0, weak supervisory signal on center prediction de-
grades the performance of CXTrack.

3. More Analysis
3.1. Comparison with M2-Track

To make a fair comparison with previous state-of-the-
art method, M2-Track [9], we follow the experimental set-



Table 3. Comparison with M2-Track on nuScenes. We both
train and test various methods on nuScenes.

Category Method Dense Medium Sparse

Car(64159) M2-Track 65.9/73.4 53.4/62.0 42.3/53.5
CXTrack 52.4/57.4 44.4/51.6 42.9/48.4

Pedestrian(33227) M2-Track 39.2/68.2 35.9/66.4 17.2/37.1
CXTrack 41.1/69.4 34.8/62.8 19.8/37.2

Truck(13587) M2-Track 67.3/68.9 57.3/57.4 46.6/46.8
CXTrack 54.3/53.6 48.7/48.7 42.6/41.3

Trailer(3352) M2-Track 54.2/52.5 61.3/63.7 57.6/59.6
CXTrack 59.0/52.9 61.3/57.2 56.6/50.9
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Figure 1. Sometimes background points also make reasonable
prediction. Red indicates the predicted target centers of all points,
including both foreground points and background points.

tings in M2-Track and train our proposed CXTrack from
scratch on nuScenes [2]. NuScenes poses a greater chal-
lenge than KITTI due to its lower frequency for annotated
frame, which enlarges the motion vectors of tracked targets
between two consecutive frames and leads to larger appear-
ance variation. Similar to LiDAR-SOT, we split NuScenes
into three sets according to the sparsity of the tracking tar-
get. As shown in Tab. 3, CXTrack performs better than M2-
Track on dense point clouds and low-speed tracked targets
such as pedestrians and trailers, but fails to tackle sparse
point clouds or high-speed targets. Compared with M2-
Track (based on PointNet [7]) which overlooks local geom-
etry information, CXTrack adopts a hierarchical network to
extract point featuers, thereby relying more on the quality
of point clouds and achieving limited performance under
sparse scenes.

3.2. Comparison with Voxel-based localization head

Compared to ST-Net [4], which employs a voxel-based
localization head [3], our proposed point-based CXTrack
exhibits a minor decrement in performance for the Car cat-
egory, while outperforming ST-Net on other categories. We
argue that the performance drop stems from the following
reasons. First, we observe that most vehicles have simple
shapes and large size, which fit well in voxels. Voxelization
in ST-Net can provide a strong shape prior, thereby lead-
ing to more precise localization than point-based CXTrack.
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Figure 2. Representative examples of attention maps in X-
RPN. Red indicates points with higher attention scores.

Secondly, our proposed X-RPN relies on target center pre-
dictions to distinguish points of interest from the back-
ground points. However, if some background points also
make similar center predictions, as shown in Fig. 1, X-RPN
may introduce noise into the point-feature interaction. Con-
versely, the limited receptive field of 3D CNN utilized in
voxel-based head restrict point-feature interaction to a local
region of 3D space, thereby distinguishing points of inter-
est from background. The lack of distractors for cars also
makes our improvement over previous methods insignifi-
cant. Nevertheless, for other categories, such as pedestrians,
that have complex shapes and small sizes, voxelization in-
troduces considerable information loss, which significantly
degrades the tracking performance.

3.3. Visualization of the activation maps in X-RPN

Some example attention maps of the local transformer in
X-RPN are shown in Fig. 2. We find that CXTrack attends
to the tracked targets of all categories correctly even with
intra-class distractors (Pedestrian in Fig. 2), owing to the
center embedding.
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