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Abstract

Small on-device models have been successfully trained
with user-level differential privacy (DP) for next word pre-
diction and image classification tasks in the past. However,
existing methods can fail when directly applied to learn em-
bedding models using supervised training data with a large
class space. To achieve user-level DP for large image-
to-embedding feature extractors, we propose DP-FedEmb,
a variant of federated learning algorithms with per-user
sensitivity control and noise addition, to train from user-
partitioned data centralized in the datacenter. DP-FedEmb
combines virtual clients, partial aggregation, private local
fine-tuning, and public pretraining to achieve strong pri-
vacy utility trade-offs. We apply DP-FedEmb to train im-
age embedding models for faces, landmarks and natural
species, and demonstrate its superior utility under same
privacy budget on benchmark datasets DigiFace, EMNIST,
GLD and iNaturalist. We further illustrate it is possible to
achieve strong user-level DP guarantees of ϵ < 2 while con-
trolling the utility drop within 5%, when millions of users
can participate in training .

1. Introduction
Representation learning, by training deep neural net-

works as feature extractors to generate compact embedding
vectors from images, is a fundamental component in com-
puter vision. Metric learning, a kind of representation learn-
ing using supervised data, has been widely applied to im-
age recognition, clustering, and retrieval [61, 75, 77]. Ma-
chine learning models have the capacity to memorize train-
ing data [10, 11], leading to privacy risks when the models
are deployed. Privacy risk can also be audited by member-
ship inference attacks [9, 63], i.e. detecting whether cer-
tain data was used to train a model and potentially expos-
ing users’ usage behaviors. Defending against such risks is
a critical responsibility when training on privacy-sensitive
data.
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Differential Privacy (DP) [23] is an extensively used
quantifiable measurement of privacy risk, now generally ac-
cepted as a standard notion of privacy in both industry and
government [5, 18, 50, 70]. Applied to machine learning,
DP requires a training procedure with explicit randomness,
and guarantees that the distribution over output models is
quantifiably similar given a certain scope of change to the
training dataset. A DP guarantee with respect to the change
of a single arbitrary training example is known as example-
level DP, which provides plausible deniability (in the binary
hypothesis testing sense of [38]) that any single example
(e.g., image) occurred in the training dataset. If we instead
consider how the distribution of output models changes if
the data (including even the number of examples) from any
single user change arbitrarily, we have user-level DP [22].
This ensures model training is quantifiably insensitive to all
of the data from any one user, and hence it is impossible
to tell if a user has participated in training with high con-
fidence. This guarantee can be exponentially stronger than
example-level DP if one user may contribute many exam-
ples to training.

Recently, DP-SGD [1] (essentially, SGD with the ad-
ditional steps of clipping each individual gradient to have
a maximum norm, and adding correspondingly calibrated
noise) has been used to achieve example-level DP for rel-
atively large models in language modeling and image clas-
sification tasks [4, 16, 42, 45, 81], often utilizing techniques
like large batch training and pretraining on public data. DP-
SGD can be modified to guarantee user-level DP, which
is often combined with federated learning algorithms and
called DP-FedAvg [49]. User-level DP has only been stud-
ied for small on-device models that have less than 10 mil-
lion parameters [36, 49, 57].

We consider user-level DP for relatively large models in
representation learning with supervised data. In our set-
ting, similar to federated learning (FL), the data are user-
partitioned; but in contrast to decentralized FL, we are pri-
marily motivated by centralized data that benefit from ac-
cess to richer computation resources and the ability to form
virtual clients at random. Throughout this work, we use
user as the basic unit of data partitioning and the granular-



2. Broadcast 
backbone to 
virtual clients

Embedding Models with User-level DP

User data store 

3. Virtual clients
fine-tune with local head

1. Sample 
virtual 
clients +∑

4. Discard local heads;
clip, aggregate and noise 
backbone update

5. Apply privatized 
update to
global backbone

6. After all rounds, 
release backbone 
embedding model 
with user-level DP

0. (Optional) initialize 
backbone with public 
pre-training

DP release

Figure 1. DP-FedEmb combines virtual clients, local fine-tuning, partial aggregation, and public pretraining to achieve strong privacy
utility trade-offs. Colors indicate different users and the simplified case of a single class per user, coloring the softmax head accordingly.

ity for privacy; a user owns their (image) data, and class,
identity and label are used interchangeably for the super-
vised information.

Though typically each user only contributes images for
a small number of classes, the combined class space from
the union of all users can be very large, which proves chal-
lenging for existing DP algorithms. When the model size is
fixed independent of the number of users, and at a relatively
small scale with a few million parameters, previous meth-
ods can only achieve strong user-level DP when millions
of users are available [36, 49, 57]. In contrast, when con-
sidering learning embedding models for applications like
facial images, the number of classes (and hence, the total
model size) can grow linearly with the number of users, and
so simply scaling up to larger datasets with more users no
longer ensures that good privacy-utility trade-offs can be
achieved. For example, in a standard multi-class training
paradigm with 128-dimensional embedding vectors, with
one million users we expect the final dense layer for pre-
diction alone to have over 128 million trainable parameters.
Further, the fact that most users will only have examples
from a small number of classes implies that gradients are
approximately sparse, whereas DP-SGD requires the addi-
tion of dense noise to the full gradient, leading to a poor
signal-to-noise ratio in the updates. Hence, existing meth-
ods can easily fail on the problems we consider.

We propose DP-FedEmb to train embedding models
with user-level differential privacy; Fig. 1 provides a high-
level overview. DP-FedEmb combines public pretraining,
virtual clients, local fine-tuning, and partial aggregation to
achieve strong privacy-utility trade-offs. The key to the
approach is partitioning the model into a backbone net-
work that generates embeddings, and a classification soft-
max head specific to the classes in the training data. In

each training round, users are grouped into virtual clients
and initialized from the global backbone. A local randomly-
initialized softmax head layer is added for the limited num-
ber of classes on the virtual client, and the complete local
model is fine-tuned in order to produce an update to the
backbone. The local head parameters are not included in
the private aggregation and hence require no noise addition.
This is in contrast to existing methods like DP-FedAvg/DP-
SGD, which would add noise to all parameters including the
softmax head. The backbone updates are clipped to a max-
imum L2 norm, aggregated across virtual clients, and com-
bined with appropriate DP noise. At this point, the noised
update is the output of a DP mechanism and satisfies the
corresponding DP guarantee. This update is then applied to
the global backbone, which inherits the DP guarantee, and
passed to the next round of training. DP-FedEmb signifi-
cantly improves the scalability of DP training for embed-
ding models, as only the parameters of the backbone net-
work are privatized and released, and the size of this portion
of the model does not grow with the number of users. Pre-
training the backbone network on public data to learn gen-
eral visual representations before applying DP-FedEmb for
more privacy sensitive tasks further improves performance.

We demonstrate the superior performance of DP-
FedEmb for embedding models by experiments on datasets
with moderate size of users and classes (DigiFace of
98.96K or 9047 users / identities, Google Landmarks
Dataset of 1262 users and 2028 classes, and iNaturalist
of 9275 users and 1203 classes). We also show relatively
strong privacy guarantees of single digit ϵ can be achieved
while maintaining strong utility if millions users can partic-
ipate in training. To our knowledge, this is the first report of
training a commonly used large vision model, ResNet-50,
with non-negligible noise for user-level DP.



2. Learning Embedding Models
2.1. Problem formulation and centralized training

We learn a backbone network parameterized by θ, that
outputs an embedding vector z = f(θ, x) for an input image
x. The backbone network, θ, is trained on paired examples
of image x and class y. The training dataset is naturally
partitioned by M users, i.e., D =

⋃M
i=1 Di.

We adopt the popular multi-class training framework
for embedding models, where a proxy weight vector wj is
learnt for each class j. We use ω to denote the union of
proxy weight vectors {wj}, which is called the head of the
network. Given a training image-class pair (x, y), logits
are computed by taking the inner product between the em-
bedding vector f(θ, x) and the proxy weight vectors in the
network head ω. This is effectively passing f(θ, x) through
a dense network layer parameterized by ω without the bias
terms. With a supervised training loss ℓ, such as the cross
entropy loss, the following objective is optimized

min
θ,ω

∑
(x,y)∈D

ℓ(⟨ω, f(θ, x)⟩, y) , (1)

where we overload the inner product notation, i.e.,
⟨ω, f(θ, x)⟩, to denote a set of inner products with each
element in ω. Typically, variants of the gradient descent
method are used to solve the optimization in (1). In each
iteration, the average gradient is computed on a sampled
minibatch of data B ⊂ D, and is then used to update the
model parameters θ and ω. Furthermore, when the output
space, i.e., the number of classes, is very large, sampled
softmax is often applied [35], where only a subset of proxy
weights sampled from ω are used in each training iteration.

2.2. User-level DP and DP-FedAvg

To achieve user-level DP, we control the sensitivity of
each user and add corresponding noise for anonymization.
To effectively control the sensitivity, it is important to un-
derstand and account for the contributions of each user in
the model updates; hence it is convenient to consider the
data at a granularity of users instead of individual samples.
Grouping together each user’s data, the objective (1) can be
rewritten as

min
θ,ω

M∑
i=1

∑
(x,y)∈Di

ℓ(⟨ω, f(θ, x)⟩, y) . (2)

The above objective of two level sum is often found in
federated learning [73], which can be optimized by the
(generalized) FedAvg algorithm [48, 58]. In generalized
FedAvg, each round t starts with the server broadcasting
θ(t), ω(t) to a subset of clients. Each client i will then up-
date the local model parameters by CLIENTOPT with pri-
vate data Di, and send back the updates for model param-
eters ∆i(θ

(t)),∆i(ω
(t)). The model deltas from sampled

clients are then aggregated and used by SERVEROPT to get
θ(t+1), ω(t+1) for the next round.

The generalized FedAvg algorithm can be extended for
user-level DP by clipping the model deltas and adding noise
proportional to the sensitivity [27,49]. We can use either in-
dependent Gaussian noise [49], or correlated noise that can
achieve comparable privacy-utility trade-off without rely-
ing on the assumption of sampling [36]. The two variants
are effectively applying DP-SGD [1] or DP-FTRL [36] as
SERVEROPT in the generalized FedAvg framework. Unlike
the cross-device FL setting where sampling is extremely
hard, it is possible to control user sampling in the datacenter
and use DP-SGD. But DP-FTRL provides the possibility of
handling the online setting where the user data are streamed
instead of collected, and can be accounted for zCDP [7] re-
ported by US census bureau [70]. A complete description
of DP-FedAvg for training a backbone network to generate
image embeddings is in Alg. 2 in Appendix B

In addition to the flexibility of generalized FedAvg for
user-level DP, there are a few side effects of FedAvg that
make it particularly effective for differentially private train-
ing. The model deltas are computed based on data for each
user before clipping in DP, which can potentially reduce the
bias introduced by clipping. As [16] suggested that aver-
aging gradients from augmented data before clipping can
improve training for example-level DP, model deltas from
user data for user-level DP can be considered a natural ex-
tension to improve the bias-variance trade-off. The commu-
nication efficiency of FedAvg that leads to infrequent aggre-
gation and model release is also desirable for DP training.
The local model updates by private data on clients intro-
duce no additional privacy cost, and only communication
rounds between clients and server have to be accounted for
DP. Though the theoretical advantages of FedAvg are only
proved under certain assumptions [74,78], FedAvg with lo-
cal updates can achieve communication efficiency and fast
convergence in various practical applications [73].

2.3. Proposed DP-FedEmb method

While generalized DP-FedAvg can be applied to train a
backbone network θ to generate embedding f(θ, x) from
image x, there are challenges that significantly affect the
efficiency and feasibility of the method. We propose DP-
FedEmb with a few key features: virtual clients, partial ag-
gregation, local fine-tuning, public pretraining, and param-
eter freezing. Details of DP-FedEmb are provided in Alg. 1.

Virtual clients. Data heterogeneity is one of the key
problems in federated optimization [73]. When we train
embedding models in the multi-class framework, the class
space can be very large and each user may only observe a
limited number of classes. In the extreme case, when train-
ing embedding models on facial images [61, 66], each user
may only have images for their own identity. This signif-



Algorithm 1: DP-FedEmb: learning embedding
model θ with user-level DP

Input: SERVEROPT with learning rate α;
CLIENTOPT with learning rate β1 and β2;
clip norm γ and noise multiplier σ;
(optional) pretrained model θ(0)

1 for round t = 0, 1, . . . , T − 1 do
2 Sample a subset of users U (t)

3 Partition users U (t) to virtual clients S(t)

4 for each virtual client V ∈ S(t) in parallel do
5 Initialize backbone θ

(t,0)
V = θ(t)

6 Randomly initialize head ω
(t,0)
V

7 for k = 0, . . . ,K − 1 do
8 Sample minibatch B ⊂

⋃
i∈V Di

9 Compute gradients ∇θV ℓB ,∇ωV
ℓB ,

where
ℓB = E(x,y)∈B ℓ(⟨ωV , f(θV , x)⟩, y)

10 Update θ
(t,k+1)
V by CLIENTOPT, θ(t,k)V ,

∇θV ℓB , β1

11 Update ω
(t,k+1)
V by CLIENTOPT, ω(t,k)

V ,
∇ωV

ℓB , β2

12 end
13 Compute clipped model update

∆
(t)
V = Clip(θ(t,K)

V − θ
(t,0)
V , γ)

14 end
15 Aggregate model updates

∆(t) = AddNoise
(∑

V ∈S(t) ∆
(t)
V , σγ

)
/|S(t)|

16 Update global backbone parameters
θ(t+1) = SERVEROPT(θ(t),∆(t), α)

17 end

icantly limits the advantage of local updates due to client
drift [39], and even with specialized regularization like [82],
FedSGD [48] with frequent aggregation and model release
has to be used instead of FedAvg. It is challenging to use
some specialized techniques for handling data heterogene-
ity [73] in DP training. Instead, we propose a simple yet
effective approach: randomly groups the data of sampled
users into virtual clients.

Unlike the cross-device FL setting where the on-device
data of users cannot be directly communicated, virtual
clients are feasible for user data in the datacenter. It is im-
portant to guarantee that a user will not be included in two
virtual clients in a single round for user-level DP, analogous
to microbatches for DP-SGD and example-level DP [1,51].
When the grouping of users for virtual clients is fixed in ad-
vance across rounds, the granularity of the DP definition can
slightly change: the adjacent dataset for DP is based on vir-
tual clients (a group of users) instead of a single user, which
has conceptually stronger privacy guarantees. However,

when virtual clients are randomly regrouped across rounds
as in Alg. 1, we can only show user-level DP as discussed
in Appendix C. Virtual clients also control the interpolation
between federated training and centralized training: when
all users are grouped into a single virtual client, federated
training is equivalent to centralized training, which removes
heterogeneity but is challenging for DP mechanism. Virtual
clients are used for both baseline DP-FedAvg and the pro-
posed DP-FedEmb method.

Partial aggregation and local fine-tuning. Another
challenge is the number of parameters in DP training. A
common backbone θ of ResNet-50 for 128 dimensional em-
bedding vectors has 23.77 million parameters. However, the
parameter size of head ω can linearly grow with the number
of classes. Taking FaceNet [61, 66] as an example again,
ω can easily grow to 1280 million for 10 million identities
in real-world applications. Sampled softmax [35, 72] can
be applied to improve training efficiency. However, as both
backbone θ and head ω are shared among users and need to
be privatized by adding noise during training, the combined
parameter size of (θ, ω) will significantly affect the privacy
utility trade-off, which cannot be mitigated by sampled soft-
max.

In DP-FedEmb, inspired by federated reconstruction
[65] and DP personalization [34], we only aggregate and
privatize the backbone network θ, which is used in inference
and has fixed parameter size that does not grow with classes.
A local head ωV is randomly initialized and updated on each
virtual client V . A fine-tuning approach is adopted for local
updates, where different learning rates β1, β2 are used for
the backbone θV and head ωV , respectively. When com-
bined with virtual clients, the partial aggregation and lo-
cal fine-tuning approach can be interpreted in various ways:
each virtual client is performing transfer learning given a
shared backbone network for representation learning; the
data of each class are their own positive samples as well as
negative samples for other classes on the same virtual client;
the size of local head ωV is also significantly smaller than
ω for all classes, which is effectively a user-based sampling
for softmax.

Public pretraining. The parameter size of the back-
bone to be privatized can still be large after applying partial
aggregation and local fine-tuning with virtual clients, e.g.,
23.77 million for ResNet-50. Inspired by recent research
on applying DP-SGD for example-level DP on large lan-
guage modeling [45, 81] and image classification [16, 42],
we use a model pretrained on public images to initialize the
DP training of the backbone network. There is a relatively
clear distinction between the public and private domains for
our task: we use public images collected from open web-
pages for pretraining, and then privately train on users’ data
collected in a datacenter.

Parameter freezing. Neural networks are known to be



overparameterized, and not all weights are equally impor-
tant [26, 84]. Freezing some parameters to be non-trainable
has been shown to be effective when the privacy budget is
small [64], especially when combined with public pretrain-
ing for large models [16, 81]. For backbone convolutional
neural networks with normalization layers, we experiment
with training parameters with all normalization layers, and
some of the convolutional kernels. However, freezing is
found to be less efficient in our setting that performs repre-
sentation learning, instead of classification, for a moderate
size model in the high-utility-moderate-noise regime.

DP mechanism and hyperparameters. Similar to gen-
eralized DP-FedAvg, we perform clipping for model deltas
and add noise for aggregated updates. The clip norm γ is
estimated by adaptive clipping [3] in the parameter tun-
ing stage. For DP-FedEmb, we perform extensive stud-
ies on several configurations in Sec. 3. Differentially pri-
vate hyperparameter tuning [55] is a topic out of the scope
of this paper, and automating hyperparameter tuning is an
important future work. Either independent Gaussian noise
like DP-SGD [49] or tree-based correlated noise like DP-
FTRL [36] can be added. Under the same noise multiplier,
DP-FedEmb will achieve the same privacy bound as DP-
FedAvg with virtual clients, while utility can be improved
for training a backbone network with a large head.

3. Experiments
We conduct experiments to train image-to-embedding

backbone networks with user-level DP. We use the Digi-
Face dataset [6] of synthetic faces based on ethical and
responsible development considerations, and verified that
the conclusions on DigiFace are very similar to conclu-
sions generated from experiments on natural facial images.
We randomly split the DigiFace dataset of 110K identities
and 1.22M into subsets of 98.96K identities with 1.10M
images for training, 5443 identities with 58.24K images
for validation, and 5598 identities with 60.82K images for
testing. We extensively use a smaller training set, Digi-
Face10K, which contains the 9047 training identities of 72
images sampled from the DigiFace training set. We also run
experiments on public datasets of natural images: EMNIST,
Google Landmarks Dataset (GLD) and iNaturalist (iNat)
dataset. These datasets are summarized in Tab. 3.

In our setting, each user holds only the images of their
own identities, i.e., user-level DP is also identity-level DP.
We use ResNet-50 [31] and MobileNetV2 [32, 60, 73] as
backbone networks, replace batch normalization [33] with
group normalization [80], and use a multi-class framework
with a large softmax head to train the backbone. The di-
mension of the embeddings are 128 for all experiments.

We evaluate the performance of the backbone network
based on predicting identity matches from the distance be-
tween two image embeddings. By varying a threshold on

the pairwise similarity, a recall versus false accept rate
(FAR) curve on the test data can be generated for a trained
model. A scalar value of recall@FAR=1e−3 is often re-
ported. The privacy guarantees are computed by either
using Renyi differential privacy (RDP) [53] and convert-
ing to (ϵ, δ)-DP by [8], or DP-FTRL accounting without
restart [36]. More discussion on privacy accounting can be
found in Appendix C. We aim for single-digit ϵ when δ is
small, and sometimes relax to ϵ ∼ 20 as we use the stronger
substitute-one DP definition [56].

We compare the proposed DP-FedEmb with non-private
oracle performance of centralized training, and baseline
methods DP-FedAvg. We tune the learning rate with learn-
ing rate scheduling for standard centralized training. The
centralized baseline is provided as an oracle for non-private
training performance. We exclude tricks like data aug-
mentation for either centralized or federated training as the
goal is not achieving state-of-the-art performance. Vir-
tual clients are used to improve DP-FedAvg performance,
and the same tuning strategy is applied for DP-FedEmb
and DP-FedAvg. In most of the experiments, unless oth-
erwise specified, we fix the hyperparameters in the feder-
ated setting and only tune the learning rates; the backbone
networks are pretrained on classifying the 1000 classes
of ImageNet [59]; both CLIENTOPT and SERVEROPT are
SGD optimizers with momentum 0.9; and more details
are provided in Sec. 3.3. Code is released at https:
//github.com/google-research/federated/
tree/master/dp_visual_embeddings.

3.1. Privacy-utility-computation trade-off

We study the privacy-utility-computation trade-offs of
training ResNet-50 on DigiFace10K in Fig. 2 and Fig. 6.
Figure 2a shows the privacy-utility trade-off. Without
adding noise, the federated algorithms (DP-)FedAvg and
(DP-)FedEmb can achieve even better results than the non-
private centralized baseline, which is consistent with recent
empirical and theoretical justifications that FedAvg is more
accurate when learning representations [14, 15]. When the
same noise multiplier is used, i.e., under same privacy bud-
get, DP-FedEmb outperforms DP-FedAvg; and the margin
increases when increasing the noise. We can observe the
advantage of DP-FedEmb over DP-FedAvg even if we only
have a small number of identities in DigiFace: the size of
the head is 9047 × 128 ∼ 1.16M , only 4.6% of the back-
bone ResNet-50 with 23.77M parameters. For large scale
data with 10 million identities, the size of the head can grow
to 1280M , which is much larger than the backbone net-
works, and DP-FedAvg can easily fail in such settings.

It can be difficult to achieve a strong formal differential
privacy bound without significantly hurting utility for Digi-
Face10K, which only has a small number of total users. We
consider the practical setting of more available users, and

https://github.com/google-research/federated/tree/master/dp_visual_embeddings
https://github.com/google-research/federated/tree/master/dp_visual_embeddings
https://github.com/google-research/federated/tree/master/dp_visual_embeddings
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Figure 2. (a) Recall@FAR=1e−3 on DigiFace validation set under different noise multiplier; (b) zoom in the high utility regime in (a);
(c) and (d) privacy-computation trade-off by extrapolating based on 3M and 10M total users, respectively. ”r400” and ”r800” represent the
result at 400 or 800 training rounds; target 71.77% is 95% of centralized non-private recall@FAR=1e−3 at 75.55%.
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Figure 3. DP-FedEmb and DP-FedAvg on DigiFace10K un-
der the same privacy budget with noise multiplier 0.08, and
additional oracle baseline of centralized training w/o DP: (a)
recall@FAR=1e−3 on validation dataset during training; dashed
lines are approximation by sampling a subset of validation users;
(b) ROC curve of trained model on test set with log scale x-axis.

study the privacy-computation trade-off in Figs. 2c, 2d, 6b
and 6c based on extrapolation. A key hypothesis follow-
ing [36,49] is used: utility (Recall@FAR) is non-decreasing
when simultaneously increasing the number of clients per
round and noise multiplier. The hypothesis is based on the
fact that the signal-to-noise ratio is non-decreasing when
linearly increasing the number of clients per round and
noise multiplier, and has been verified in practice [50, 57].

We first choose the noise multiplier that is within 5%
of recall@FAR=1e−3 compared to centralized non-private
training in Figs. 2a and 6a, based on simulation that sam-
ples 64 virtual clients that each have 32 users per round:
recall@FAR=1e−3 is 72.16 for running DP-FedAvg with
0.01 noise multiplier for 400 rounds, 72.37 for running DP-
FedAvg with 0.015 noise multiplier for 800 rounds, 71.3
for running DP-FedEmb with 0.015 noise multiplier for 400
rounds, 72.6 for running DP-FedEmb with 0.02 noise mul-
tiplier for 800 rounds, and 71.85 for running DP-FTRL-
FedEmb with 0.26 noise multiplier for 800 rounds. Then we
linearly increase the number of users sampled and use the
increased noise multiplier in RDP accounting to compute
privacy bound ϵ given δ = 10−7 to generate Figs. 2c, 2d
and 6b, and compute zCDP for Fig. 6c. Comparing curves
of r400 and r800, training longer with larger noise is more

effective than training shorter with smaller noise. Figure 2c
suggests ∼98K users per round is enough for DP-FedEmb
to achieve single-digit ϵ if 3M users are available, while
∼57K users per round are needed if 10M users are avail-
able in Fig. 2d. 98K users is 48× the number of users per
round in our current simulation, which can be achieved by
training with 8× computing resources for 6× longer. In
Fig. 6b, there is a crossover point when using DP-FTRL
versus DP-SGD for DP-FedEmb, and DP-FTRL is more ef-
fective for relatively large privacy ϵ. Figure 6c shows that
DP-FTRL-FedEmb can achieve zCDP smaller than 2.6, as
used by US Census Bureau [70], when 8× users per round
and 10M total users are available.

3.2. Model evaluation

In Tab. 1, we summarize the quantitative results from the
privacy-utility-computation trade-off analysis in Sec. 3.1.
Each experiment runs three times to compute the mean and
standard deviation. For similar recall@FAR=1e−3 on the
DigiFace validation set, DP-FedEmb achieves stronger pri-
vacy guarantee than baseline DP-FedAvg, and the advan-
tage of DP-FedEmb is expected to be more pronounced if
a head for larger 10M identities is used for training. When
10M users are available and 64× users per round in train-
ing, privacy ϵ = 3.90 of single digit and zCDP= 1.28
smaller than 2.6 can be achieved when recall@FAR=1e−3
is within a 5% drop compared with non-private centralized
training. In addition to validation performance, the private
models also perform well on the left-out test dataset. Fig-
ure 3 presents the training curves and ROC curves for com-
paring DP-FedEmb and DP-FedAvg under the same privacy
budget. DP-FedEmb outperforms DP-FedAvg in all train-
ing rounds, and trains a stronger private model with better
recall at different false accept rates.

3.3. Ablation study

We primarily use MobileNetV2 for ablation studies on
DigiFace10K for two reasons: MobileNetV2 is smaller and
faster for training in experiments; to test the generalization
of DP-FedEmb and avoid overfitting on ResNet-50.



Algorithm Hyperparameters Privacy (10M users) Recall@FAR=1e−3
Noise SerLR RDP-ϵ zCDP Validation Test

Centralized 0 0.05 ∞ ∞ 75.55± 0.05 75.53± 0.12
DP-FedAvg 0.015× 64 0.5 5.62 - 72.57± 0.12 72.37± 0.09
DP-FedEmb 0.02× 64 0.2 3.90 - 72.63± 0.05 72.37± 0.09

DP-FTRL-FedEmb 0.26× 64 0.2 9.67 1.28 72.2± 0.29 71.87± 0.26

Table 1. Quantitative results of privacy and utility on the DigiFace10K dataset. The client learning rate and clip norm for federated
algorithms are 0.002 and 0.6, respectively; δ = 10−7 for privacy guarantees. Centralized training has a standard learning rate scheduling,
while tricks like data augmentation are excluded for all methods. The privacy guarantees are extrapolated based on 10M users and 131K
users per round. A strong privacy guarantee can be achieved within a 5% drop on recall@FAR=1e−3.
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Figure 4. Recall@FAR=1e−3 on DigiFace validation set when
training a MobileNet (a) with DP-FedEmb w/ pretraining, and
baselines of DP-FedEmb w/o pretraining and DP-FedAvg; (b)
with different pretrained models.

Parameter freezing and public pretraining. For sim-
ilar parameter size, MobileNetV2 outperforms ResNet-50
with frozen parameters, and Fig. 4a shows the privacy-
utility trade-off. Recall@FAR=1e−3 of DP-FedEmb-r800
on MobileNetV2 only drops from 68.86% to 67.56% when
0.02 noise is added, while ResNet-50 drops from 79.09%
to 72.6%. However, ResNet-50 still outperforms Mo-
bileNetV2 by a large margin in the high utility regime. DP-
FedEmb consistently outperforms DP-FedAvg when noises
are added. In Fig. 4b, though the private fine-tuning utility
is not linearly increasing with pretraining accuracy, there
seems to be a general positive correlation: better pretrained
models can lead to better private models except for one out-
lier where a inferior pretrained model causes difficulty in
training. More discussion on parameter freezing and public
pretraining is provided in Appendix D.4.

Federated settings. In the above experiments, we fix
important hyperparameters for the federated setting: users
per virtual client is 32, virtual clients per round is 64, ex-
amples per client is capped at 2048, the head learning rate
(LR) scale β2/β1 is 100, the buffer size for data shuffling
on clients is 2048, and the batch size for local SGD is
32. In Fig. 9, instead of tuning these hyperparameters in
advance, we conduct a study on these hyperparameters to
understand DP-FedEmb. Among these hyperparameters,
Figs. 9a and 9d suggest virtual clients and head LR scale
are particularly important for DP-FedEmb to be on par with

non-private centralized training, which is an important con-
tribution of this work. Figures 9a to 9c suggest users per vir-
tual client, clients per round, and examples per client only
need to be large enough under privacy consideration and
computation resources for the best practice. The head LR
scale has a large tuning range between 50 and 500 in Fig. 9d.
Recall@FAR=1e−3 is not sensitive to shuffle buffer size in
Fig. 9e. The model utility can be potentially improved if
we further tune the client batch size as suggested by Fig. 9f.
We fixed the learning rate and other hyperparameters while
varying one of the hyperparameters in the ablation study.
How to automate tuning, especially tuning with differential
privacy guarantees, is an important future work.

Learning rate (LR). For experiments in Secs. 3.1
and 3.2, server and client learning rates are first tuned
for non-private federated training with adaptive clipping of
quantile 0.5 [3]. Then server learning rate is tuned when
adding noise for private tuning, while estimated clip norm
and client learning rate are fixed. The tuning range of learn-
ing rates are {1, 2, 5}∗10−n. Figures 5a and 5b suggest the
optimal learning rates are similar for training 400 rounds or
800 rounds in non-private training. We then fix the client
learning rate to be 0.002 and use the estimated clip norm
0.6 for MobileNetV2 in Fig. 5c, and observe the fixed clip
results are very similar to adaptive clipping results. The
best server learning rate for private training with noise can
be smaller than non-private training, where the difference is
even more notable for larger model ResNet-50 in Fig. 5d.

Variants of DP-FedEmb. We use local fine-tuning with
different learning rates β1, β2 to update backbone and head
parameters. An alternative is to reconstruct the head first
before fine-tuning the backbone [41, 65]. We empirically
find that head reconstruction can only achieve similar per-
formance as the proposed fine-tuning when there are same
or more number of updates on the backbone network, and
hence use local fine-tuning for efficiency. It is also possible
to use binary or triplet loss within a virtual clients. In our
preliminary results, they achieve inferior results compared
to DP-FedEmb that uses multi-class cross-entropy loss. We
leave other improvement like arcface loss [17] as future
work.
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Figure 5. Study for learning rates. (a) and (b) recall@FAR=1e−3 after training MobileNetV2 using DP-FedEmb with adaptive clipping [3]
and 0 noise for 400 rounds and 800 rounds, respectively; (c) and (d) varying server learning rate with fixed client learning rate and clip
norm for MobileNetV2 and ResNet-50.

Dataset Algorithm Recall@FAR=1e−3 / 0.1
Approx AllPair

DigiFace DP-FedEmb - 19.76± 0.43
DP-FedAvg - 13.38± 0.27

EMNIST DP-FedEmb 10.64± 0.5 10.47± 0.5
DP-FedAvg 9.78± 0.44 9.67± 0.41

GLD DP-FedEmb 26.18± 0.44 27.07± 0.04
DP-FedAvg 24.48± 1.0 26.27± 0.17

iNat DP-FedEmb 40.49± 1.08 40.93± 0.94
DP-FedAvg 29.57± 0.78 29.6± 0.65

Table 2. The utility under same privacy budget for DigiFace [6],
EMNIST [67], GLD [68] and iNat [69] datasets.

3.4. Additional results

We run additional experiments of ResNet-50 on the
larger DigiFace of 98.96K users. Because a lot of users
in DigiFace have only 5 images, we set each virtual client
to contain 64 users, and use 3072 samples per virtual
client. We sample 128 virtual clients per round, and a
relatively large noise 1.39 in RDP accounting can achieve
ϵ = 24.86, δ = 10−5 without extrapolation. The util-
ity measured by recall@FAR=1e−3 is shown in Tab. 2.
Though the utilities of both methods are significantly de-
graded by the large noise, DP-FedEmb is much better than
the DP-FedAvg baseline because the noise is only added to
backbone of ∼2.4M parameters instead of backbone plus
head of ∼15M parameters. The full table including EM-
NIST [67] results for reproducibility and hyperparameter
choices is provided in Tab. 4 in Appendix D.

In Tab. 2, we also conduct experiments with Mo-
bileNetV2 on Google Landmark Dataset (GLD) [32, 68,
77] and iNaturalist (iNat) dataset [32, 47, 69] to demon-
strate the generalization of DP-FedEmb. We use a pub-
lic model pretrained on ImageNet, and report extra ap-
proximate recall@FAR by computing pairwise similarity
for minibatches, which is easy to reproduce and consistent
with the all pair recall@FAR. We fix the hyperparameters

for the federated settings, and compare the performance of
DP-FedEmb and DP-FedAvg under the same privacy bud-
get (noise multiplier). Since each user already has multiple
classes in GLD, we use a smaller number of users, 8, in
each virtual client. We also use a smaller number of vir-
tual clients per round, 32, for fast experiments and strong
sampling effect. Recall@FAR=1e−3 of DP-FedEmb and
DP-FedAvg with small noise multiplier 0.02 on GLD out-
performs centralized training. For iNat, we use an even
smaller four users per virtual client and train for only 400
rounds, and use a relatively large noise multiplier 0.5 to get
a single-digit ϵ = 16.06 DP guarantee for 9275 users. We
report recall@FAR=0.1 instead of recall@FAR=1e−3 for
the challenging iNat task. In all experiments, DP-FedEmb
consistently outperforms DP-FedAvg.

4. Conclusion

This paper presented DP-FedEmb for training embed-
ding models with user-level differential privacy. We show
how practical utility with strong privacy guarantees can be
achieved in the data center, thanks to key algorithm design
choices around the construction of virtual clients and in the
selection of what information is shared among users. Our
experiments validate this improves the privacy utility trade-
off upon vanilla DP-FedAvg for supervised representation
learning. Though strong formal DP bounds at practical lev-
els of utility could only be achieved when millions of users
participate in training, DP-FedEmb is designed to be excep-
tionally scalable when model size and class space increases
with number of users. DP-FedEmb can also be applied to
decentralized FL when each real client contains multiple
classes, possibly reducing the necessity of virtual clients.
Finally, DP is a worst-case guarantee that can be improved
by both algorithmic design and advanced accounting meth-
ods; the non-negligible noise we added for the small scale
datasets in experiments are ready to be empirically audited
for privacy.
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A. Related work
Differential Privacy (DP), introduced by [23], is a formal mathematical notion of privacy protection. Formally, two
datasets D and D′ are said to be neighboring if they differ at most by one entry. A randomized mechanism A is said to be
(ϵ, δ)-differentially private if P(A(D) ∈ S) ≤ eϵP(A(D′) ∈ S) + δ, for all neighboring D and D′. We refer to this original
definition as example-level DP, and several variations have been proposed, including Renyi DP (RDP) [53], Privacy Loss
Distribution (PLD) [20, 40], and concentrated DP (zCDP) [7].

A formal definition of user-level DP is introduced in [22], where the unit of privacy protection is extended from a single
entry (in the original example-level DP) to every entry that belongs to the same user. The dependence of the utility on the
number of users and the number of samples per user has been studied for various tasks: empirical risk minimization and mean
estimation [44], estimating discrete distributions [46], and PAC learning [28]. Extensions to heterogeneous users in sample
size have been studied in [2,25]. User-level DP is particularly useful in federated learning, where the natural unit of privacy is
a user (i.e., a client) [27,51] and standard private training algorithms respect user-level DP [49]. The privacy-utility trade-off
for user-level DP is investigated in [34, 62] where feature extractors are federated trained and classifiers are personalized.

Representation learning and metric learning are active research directions in computer vision. Recently, a lot of progress
has been made towards representation learning with large-scale unsupervised data [13, 29, 30, 83]. However, we consider
representation learning with supervised data as it is widely used for downstream tasks like face recognition and clustering
[61,66], person re-identification [79], and landmark recognition [77], which can significantly benefit from privacy protection.
Two technical frameworks are often used in the supervised representation learning tasks due to the large output space: triplet
and its variants with hard negative mining [61], and multi-class training with proxy weights [17, 66, 76]. We propose DP-
FedEmb based on the multi-class approach for the following reasons: the two approaches can achieve similar performance
when trained with large-scale data [54]; multi-class training is simple and flexible, and can be more efficient when less data
are touched every iteration; and negative sampling can trigger non-trivial computational and privacy cost. To the best of our
knowledge, differentially private models have not been trained for large-scale representation learning.

Federated learning is an active research topic primarily designed for learning from decentralized data [37,73]. We propose
DP-FedEmb based on federated learning algorithms as they are suitable for user-level DP. User-level DP can be achieved in
federated learning by variants of DP-FedAvg [3, 27, 36, 49, 57]; the previous works train relatively small models for image
classification and language modeling tasks. Closest to DP-FedEmb is [65], which proposed federated reconstruction that
performs partially local training for personalization; [19] fixed the softmax and train the feature extractor before calibrating
for image classification tasks; [72] modified sampled softmax for large output space in federated learning. These works are
designed for learning with decentralized data, and do not consider differential privacy. [52] use differential privacy on proxy
vectors to mitigate the privacy concerns when clients exchange weight vectors of identities for federated training, which is
different from our motivation of training a differentially private model that will not memorize a specific user’s data.



B. DP-FedAvg algorithm

Algorithm 2: Learning embedding model θ with generalized DP-FedAvg [49, 73].
Input: SERVEROPT with learning rate α;

CLIENTOPT with learning rate β;
clip norm γ and noise multiplier σ;
(optional) pretrained model θ(0)

1 for round t = 0, 1, . . . , T − 1 do
2 Sample a subset U (t) of users
3 for each client i ∈ U (t) in parallel do
4 Initialize parameters (θi, ωi)

(t,0) = (θ, ω)(t)

5 for k = 0, . . . ,K − 1 do
6 Sample minibatch B ⊂ Di

7 Compute gradients ∇(θi,ωi)ℓB , where ℓB = E(x,y)∈B ℓ(⟨ωi, f(θi, x)⟩, y)
8 Update (θi, ωi)

(t,k+1) by CLIENTOPT, (θi, ωi)
(t,k), ∇(θi,ωi)ℓB , β

9 end
10 Compute clipped model update ∆

(t)
i = Clip((θi, ωi)

(t,K) − (θi, ωi)
(t,0), γ)

11 end
12 Aggregate model updates ∆(t) = AddNoise

(∑
i∈U(t) ∆

(t)
i , σγ

)
/|U(t)|

13 Update global parameters (θ, ω)(t+1) = SERVEROPT((θ, ω)(t),∆(t), α)

14 end

C. Remark on privacy accounting
The accounting and differential privacy definition of DP-FedEmb depends on the DP mechanism applied in noise addition.

If independent Gaussian noise similar to DP-SGD [1, 49] is used in Alg. 1, we adopt the substitute-one notation for DP
definition [24, 71] and leveraged privacy amplification for uniform sampling. If tree-based noise similar to DP-FTRL [36]
is used in Alg. 1, we adopt the add-or-remove with special element notation in [36] for DP definition. We use uniformly
sample users in each round of Algs. 1 and 2. Though DP-FTRL [36] assumes a different data streaming pattern, the practical
effect is likely negligible. We use implementation in [21] for RDP accounting for DP-FedEmb, and use the open-sourced
implementation by [36] for DP-FTRL-FedEmb. While privacy loss distribution (PLD) [20,40] accounting can be tighter than
RDP accounting, the current implementation [21] does not support substitute-one and uniform sampling. Future improvement
on privacy accounting can help further improve the guarantees obtained in our experiments.

Accounting for virtual clients. We provide more discussion on the accounting of virtual clients proposed in this paper.
We consider user-level DP where datasets adjacency in the DP definition is based on changing all data of a single user, which
is one kind of group-level DP stronger than example-level DP. Under virtual clients described in Alg. 1 and Sec. 2.3, though
we cannot formally show the (stronger) ”virtual client”-level DP due to the randomized grouping of clients, we can show
user-level DP by the following key idea: when one user is replaced in one round, at most one virtual client is affected; the
sensitivity is controlled by clipping the updates from virtual clients; noise is added proportional to clip norm, and hence
proportional to sensitivity; a formal guarantee for Gaussian mechanism can be shown for noise proportional to sensitivity.
The same logic can be used to prove for microbatches [51] in DP-SGD for example-level DP is analogously to virtual clients
in DP-FedAvg and DP-FedEmb for user-level DP.

There is indeed a nuance in applying virtual clients in practice. Although add-or-remove-one neighboring relationship
is popular in DP definition, it can be challenging in virtual clients. Following a worst case reasoning, adding or removing
one user in a virtual client can arbitrarily change the signal of the virtual client. Even though the norm of virtual clients is
clipped, the sensitivity of the mechanism may be doubled. Trying to adopt the add-or-remove-one DP definition will cause the
sensitivity of virtual clients (of more than one user) to double compared to without grouping users by virtual clients. However,
the sensitivity is consistent between virtual clients (of more than one user) and without virtual clients for the substitute-one
DP definition. Another nuance comes from the amplification by sampling used to achieve strong privacy guarantees. For
add-or-remove-one DP definition, Poisson sampling [1] is assumed for privacy accounting but not enforced in simulation.



By adopting the substitute-one DP definition, our accounting assumption and simulation consistently use uniform sampling.
Conceptually, the substitute-one DP guarantees can be twice as strong as add-or-remove-one DP guarantees [56, Section
2.1.1]. Though the DP guarantees of different DP definition is not directly comparable, we can potentially relax the target DP
guarantees of ϵ ≤ 10 for add-or-remove-one DP to ϵ ≤ 20 for substitute-one DP in practice [56, Section 5.2.2]. Hence we
use substitute-one DP definition in this paper 1. Note that all the nuances discussed also apply to microbatches and DP-SGD,
which is often overlooked in the past.

D. Additional experimental details
D.1. Dataset statistics

Dataset Train Validation Test
Users Classes Images Users Classes Images Users Classes Images

DigiFace 98.96K 98.96K 1.10M 5443 5443 58.24K 5598 5598 60.82K
DigiFace10K 9047 9047 0.65M - -

EMNIST 6800 36 0.58M 3400 26 17.68K -
GLD 1262 2028 0.18M - 2028 19.53K -
iNat 9275 1203 0.12M - 1203 35.64K -

Table 3. The statistics of simulation datasets. The Google Landmarks Dataset (GLD) and iNaturalist (iNat) dataset are preprocessed by
Tensorflow Federated [68, 69]. For the training of EMNIST, we use images of class 0 − 35 in the union of the 3400 train and test clients
in Tensorflow Federated dataset [67]; and use images of class 36 − 62 in the 3400 test clients for validation. The shape of an image is
112× 112 for DigiFace/DigiFace10K, 224× 224 for GLD and iNat, and 28× 28 for EMNIST.

D.2. DP-FTRL-FedEmb curves
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Figure 6. (a) Recall@FAR=1e−3 on DigiFace validation set under different noise multiplier when use DP-FTRL [36] for DP-FedEmb.
(b) and (c) privacy-computation trade-off by extrapolating based on 3M and 10M total users; ϵ by RDP accounting for DP-FedEmb and
DP-FTRL-FedEmb, and zCDP for DP-FTRL-FedEmb are reported, respectively.

D.3. Training and ROC curves

D.4. Parameter freezing and public pretraining

Parameter freezing. In Figs. 2a and 6a, we notice that the utility measured by recall@FAR=1e−3 can decrease faster
when increasing the noise multiplier than observed for models in previous work [36]. After using DP-FedEmb to reduce
the size of parameters to be noised, the ResNet-50 backbone still has ∼24M parameters, which is 6× the language model

1In a previous version of the draft, we use privacy accounting for add-or-remove-one DP definition but did not account for the sensitivity inflation of
virtual clients. We have correct the privacy guarantees to consistently use the substitute-one DP definition, and it does not affect our conclusion. Virtual
clients are used for both DP-FedEmb and DP-FedAvg, which is necessary under the extreme heterogeneity, for example, when each user only has images of
a single identity. Both DP-FedEmb and DP-FedAvg can achieve user-level DP and are compared under the same DP definition.
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Figure 7. DP-FedEmb and DP-FedAvg on DigiFace10K under the same privacy budget, and additional oracle baseline of centralized
training w/o DP: (a) recall@FAR=1e−3 on validation dataset during training, and dashed lines are approximation by sampling a subset of
validation users; (b) and (c) ROC curve of trained model on test set, with noise multiplier 0.02 and 0.08, respectively; the x-axis in (b) and
(c) are in logarithmic scale.
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Figure 8. Recall@FAR=1e−3 on DigiFace validation set when training (a) a ResNet with partial frozen parameters for 800 rounds without
noise; (b) a partially frozen ResNet with DP-FedEmb; (c) a MobileNet with DP-FedEmb w/ pretraining, and baselines of DP-FedAvg and
DP-FedEmb w/o pretraining; (d) a MobileNet with different pretrained models.

in [36] that has ∼4M parameters. We explore freezing parameters and the alternative model architecture MobileNetV2 of
∼2.4M parameters. We train parameters of all normalization layers, and gradually freeze the convolutional kernels from
lower level to higher level (w or w/o the input convolutional layers) to generate Fig. 8a. For image-to-embedding models,
recall@FAR=1e−3 linearly increases with the size of parameters, which is different from the observation that models are
redundant for image classification [26, 64]. Additionally training the input convolutional layers [12] is more efficient than
only training the higher levels of the network. In Fig. 8b, we freeze the convolutional kernels of intermediate two groups of
residual blocks (out of the total four groups) in ResNet-50, which leads to a backbone network of 15.48M parameters. The
partially frozen model is inferior to the full model for small-medium noise, and only effective in the low-utility regime of
large noise 0.4.

For similar parameter size, MobileNetV2 outperforms ResNet-50 with frozen parameters, and Fig. 4a shows the privacy-
utility trade-off. Recall@FAR=1e−3 of DP-FedEmb-r800 on MobileNetV2 only drops from 68.86% to 67.56% when 0.02
noise is added, while ResNet-50 drops from 79.09% to 72.6%. However, ResNet-50 still outperforms MobileNetV2 by a
large margin in the high utility regime. DP-FedAvg is worse than DP-FedEmb when noises are added.

Public pretraining. Even though the input image size of DigiFace is 112× 112, different from the ImageNet pretraning
image size of 224 × 224, the pretrained scale-invariant backbone can consistently improve the performance by > 5% under
the same noise level, as shown in Fig. 4a. Comparing curves of round 400 and round 800, the gain of public pretraining is
larger when trained with a smaller number of rounds. We also pretrain a few different MobileNetV2 models on ImageNet by
varying the total training epochs, and summarize the results in Fig. 4b. Though the private fine-tuning utility is not linearly
increasing with pretraining accuracy, there seems to be a general positive correlation: better pretrained models can lead to
better private models except for one outlier where a inferior pretrained model causes difficulty in training. Without private
training, the recall@FAR=1e−3 of these pretrained models on DigiFace (with ImageNet validation accuracy) are smaller than
0.6%. Due to the domain difference, the utility of the pretrained model on DigiFace can be low, and it may not be consistent



with the accuracy on ImageNet. For example, a pretrained MobileNetV2 can achieve 56.43% accuracy on ImageNet while
only 0.27% recall@FAR=1e−3 on DigiFace, but it can boost the recall@FAR=1e−3 of training with DP-FedEmb and 0
noise, from 57.12% for round 400 and 62.76% for round 800 to 65.19% and 68.86%, respectively. Finally, pretraining
may not always help. For example, when pretraining from the (preprocessed) Google Landmark (GLD) dataset, the final
recall@FAR=1e−3 can be worse than without pretraining.

D.5. Ablation study curves

10 15 20 25 30 35 40 45 50 55
Users per virtual client

56
58
60
62
64
66
68
70
72

Re
ca

ll@
FA

R1
e-

3

DP-FedEmb-r800 Fixed

(a)

20 30 40 50 60 70 80 90
Clients per round

61
62
63
64
65
66
67
68
69
70

Re
ca

ll@
FA

R1
e-

3

DP-FedEmb-r800 Fixed

(b)

1500 2000 2500 3000 3500 4000
Examples per client

64

65

66

67

68

69

70

71

Re
ca

ll@
FA

R1
e-

3

DP-FedEmb-r800 Fixed

(c)

20 22 24 26 28

Head LR scale

50
52
54
56
58
60
62
64
66
68
70

Re
ca

ll@
FA

R1
e-

3

DP-FedEmb-r800 Fixed

(d)

500 1000 1500 2000
Client shuffle buffer size

65

66

67

68

69

70

Re
ca

ll@
FA

R1
e-

3

DP-FedEmb-r800 Fixed

(e)

10 20 30 40 50 60
Client batch size

65

66

67

68

69

70

71

72

Re
ca

ll@
FA

R1
e-

3

DP-FedEmb-r800 Fixed

(f)

Figure 9. Ablation study for the fixed hyperparameters in (DP-)FedEmb; MobileNetV2 is trained for 800 rounds on DigiFace10K with
adaptive clipping [3] and zero noise; all the other hyperparameters are fixed when (a) users per dynamic client (b) clients per round (c)
examples per client (d) head LR scale β2/β1 (e) client shuffle buffer size (f) client batch size is varied.

D.6. Full table of additional results

Dataset Algorithm Hyperparameters Recall@FAR=1e−3 / 0.1
Noise SerLR CliLR Clip Approx AllPair

DigiFace DP-FedEmb
1.39

5e−3
2e−3

0.5 - 19.76± 0.43
DP-FedAvg 2e−3 1.5 - 13.38± 0.27

EMNIST DP-FedEmb
0.62 0.02 5e−3 1

10.64± 0.5 10.47± 0.5
DP-FedAvg 9.78± 0.44 9.67± 0.41

GLD DP-FedEmb
0.02

1
5e−4

0.3 26.18± 0.44 27.07± 0.04
DP-FedAvg 0.5 0.7 24.48± 1.0 26.27± 0.17

iNat DP-FedEmb
0.5

0.02 5e−4 0.2 40.49± 1.08 40.93± 0.94
DP-FedAvg 0.01 1e−3 1 29.57± 0.78 29.6± 0.65

Table 4. The utility under same privacy budget for DigiFace [6], EMNIST [67], GLD [68], and iNat [69] datasets.

For EMNIST, we train the embedding model on images of class 0 − 35 and test on images of class 36 − 62. Using a



relatively large noise multiplier 0.62 for 200 rounds, and sampling 8 users per virtual client and 32 virtual clients per round,
ϵ = 9.28, δ = 10−4 can be achieved given 6800 users. A small nework with two convolutional layers similar to LeNet [43] is
used as the backbone network, and no pretrained model is used for initialization. We provide results on EMNIST primarily
for reproducibility as the scale of EMNIST is smaller than the other datasets used in this draft.
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