
Appendix

A. Binary Mask
Here we show that by using the binary mask bl to per-

form depth-wise CONV, the corresponding output channels
are pruned.

Let bl = {0}o0×1×1×1⊕{1}o1×1×1×1, where o0 and o1
denote the number of zeros and ones in bl, respectively, with
o0 + o1 = o, and ⊕ refers to channel-wise concatenation.
Thus we have

al = bo×1×1×1
l ⊙ (wo×i×k×k

l ⊙ al−1)

= ({0}o0×1×1×1 ·wo0×i×k×k
l ⊙ al−1)

⊕ ({1}o1×1×1×1 ·wo1×i×k×k
l ⊙ al−1)

= wo1×i×k×k
l ⊙ al−1.

(16)

We can see that after using the binary mask bl to perform
depth-wise CONV with wl⊙al−1, the output channels cor-
responding to the zero elements in bl are pruned, and only
channels corresponding to the non-zero elements in bl are
left.

B. Steps to Obtain Implicit Gradients

We show how to obtain dw∗

ds . Since w∗ is optimal, we
have

∇wg(w∗, s) = 0, (17)

where g(w, s) = L(w, s) + 1
2λw

Tw. By implicit function
theorem [54], we have

d∇wg(w∗, s)

ds
= 0, (18)

Applying the chain rule, we can obtain

∇2
swg(w∗, s) +

dw∗

ds
∇2

wg(w∗, s) = 0. (19)

dw∗

ds can be obtained through

dw∗

ds
= −∇2

swg(w∗, s)∇2
wg(w∗, s)−1. (20)

C. Computation of Second-Order Information
We show how to obtain the second-order derivatives. Us-

ing the chain rule, we can obtain that

∇wL(w∗, s) = diag(s)∇wbL(wb) = s · ∇wbL(wb), (21)

∇sL(w∗, s) = diag(w∗)∇wbL(wb) = w∗ · ∇wbL(wb) (22)

Thus

∇swL(w∗, s) = ∇s[s · ∇wbL(wb)] (23)

= diag(∇wbL(wb)) + diag(s)[∇s(∇wbL(wb))]
(24)

= diag(∇wbL(wb)) + diag(s)[∇w∗(∇2
wb

L(wb))]
(25)

= diag(∇wbL(wb)) (26)

where the last equality holds due to the Hessian-free as-
sumption.

D. Details of mIoU
The computation of mIoU is shown below,

mIoU =
1

n

n∑
i

∑
P i
overlap∑
P i
union

, (27)

where n is the class number (e.g., 19 for Cityscapes), and
Pi refers to pixels that are assigned to a specific class label
i.

E. Details of Compiler Optimization
Compiler optimization can support various pruning ra-

tios. The compiler optimization consists of the following
components in detail.

Sparse Model Storage. To further improve data locality,
compared with the well-known CSR, a more compact for-
mat is adopted to store the sparse model weights. We avoid
storing zero weights of the model to achieve a high com-
pression rate. We remove redundant indices from the struc-
tured pruning. The sparse model storage can save the scarce
memory bandwidth of mobile devices.

Layer Fusion. Layer fusion is commonly adopted in
compiler optimization to fuse the computation operators in
the computation graph. With the help of layer fusion, we
can avoid saving the parameters of fused operators and their
intermediate computation results. The operator number is
also reduced. For layer fusion, based on the computation
laws such as associative property and distributive property,
we identify some operator combinations which are available
for fusion. The basic rule is to check whether the fusion can
enlarge the overall computation for CPU/GPU utilization
improvement and reduce the memory access for memory
efficiency. For example, a combination of the Convolution
layer (or Depthwise Convolution layer) and its following
BatchNorm layer can be fused into one layer to reduce the
data movement and access with higher instruction level par-
allelism.

Matrix Reorder. There are some well-known challenges
for sparse matrix multiplications, such as the heavy load im-
balance among each thread and irregular memory accesses.
To deal with these challenges, a matrix reorder method is
adopted to leverage the structure information from the struc-
tured pruning. For example, for the column pruning to re-
move the whole columns, there is a certain degree of reg-
ularity as the rest weights are stored in unpruned columns.
Thus, matrix reorder rearranges the rows with the same or



similar patterns together, i.e., reorders the rows. Then, ma-
trix reorder makes the weights in the column direction (e.g.,
kernels in CNN) more compact.

Parameter Auto-Tuning. During compiler optimization,
there are many parameters, such as data placement on GPU
memory, loop unrolling factors, matrix tiling sizes, etc. The
compiler adopts an auto-tuning method to find the best con-
figuration of the parameters. Specifically, a genetic algo-
rithm is used to search the parameter space. Besides, we
can use a larger population number in each generation to
improve the exploration parallelism.

F. Visualization Comparison
We visualized the inference results of TopFormer-Base

and Ours-Base on the ADE20K validation dataset in Fig-
ure A1 and the Cityscapes validation dataset in Figure A2.
Ours-Base model can achieve better visualization perfor-
mance than the TopFormer-Base model.

G. Results with Different hyperparameters
We experiment with different values of β and show the

results in Table A1. The target MACs is 2.4G. We choose
β = 0.01 as it can achieve the best performance. If β is too
small, it can hardly obtain the target MACs requirement.
We show the results of different λ in Table A2.

H. More Pruned models
We conduct additional experiments to obtain models

with other compression rates based on our unpruned model.
As shown in Table A3 and A4, we can see that usually, the
mIoU drops as we prune more parameters, and when the pa-
rameter counts are above 60%, the mIoU can be kept above
76.1 and 39.6 for Cityscapes and ADE20K dataset, respec-
tively, which are close to the original mIoU of the unpruned
model with 76.5 and 39.9 mIoU. In the extreme case where
the parameter counts are only 9% of the unpruned model,
our mIoU is still higher than the SOTA TopFormer baseline
with fewer parameters and computations.

Table A1. Results on Cityscapes with different β.

β 0.001 0.01 0.1 1.0

mIoU 73.1 73.6 72.8 71.2

Table A2. Results on Cityscapes with different λ.

λ 0.01 0.1 1.0

mIoU 73.1 73.6 70.8

Table A3. Comparison of our searched models and TopFormer-B
on the Cityscapes dataset.

Supernet Ours TopFormer-B

# Params 10.34M 6.2M 3.7M 3.3M 1.3M 0.9M 5.1M
% Params 100% 60% 36% 32% 13% 9% −
GMACs 8.2 6.2 3.6 2.4 1.4 1.0 2.7

mIoU 76.5 76.1 74.7 73.6 71.5 70.7 70.6

Table A4. Comparison of our searched models and TopFormer-T
on ADE20K dataset.

Supernet Ours TopFormer-B

# Params 10.34M 6.2M 3.7M 3.3M 1.3M 0.9M 1.4M
% Params 100% 60% 36% 32% 13% 9% −
GMACs 4.1 3.1 1.8 1.2 0.7 0.5 0.6

mIoU 39.9 39.6 38.9 37.5 33.5 32.0 31.8



(a) Input (b) Ours-Base (c) TopFormer-Base

Figure A1. Visualization results on samples of ADE20K validation dataset.

(a) Input (b) Ours-Base (c) TopFormer-Base

Figure A2. Visualization results on samples of Cityscapes validation dataset.


