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Figure 1. Overview of our data collection platform. Three alter-
natives are provided for capturing RGBD data. Note that RGBD
cameras are connected with the drone by pan-tilt, thus the captur-
ing viewpoints can be flexibly changed.

A. Dataset Construction

Flight platforms. We present our real-world data col-
lection on a handcrafted flight platform, mounted with ad-
vanced RGBD cameras, as shown in Fig. 1. There are
three alternatives for RGBD video capturing, i.e., Azure
Kinect DK, ZED 2i and RealSense D455. They are used
for video collection under different scenarios and differ-
ent viewpoints, which can increase the dataset diversity
on acquisition process. For ease of use, we also apply a
compact commercial camera drone platform - DJI Mavic
Air 2 - to acquire high-quality RGB video streams, with
which we then obtain depth maps by monocular depth es-
timation. This helps us to capture videos in some narrow
spaces and guarantee the flight safety. To maintain high-
quality depth information in the whole dataset, we employ
DenseDepth [1] to generate corresponding depth maps.

Dataset statistics. We provide the distribution of cap-
tured scenarios in our test set in Fig. 2. As shown, 34 places
are included in our test set, which covers diverse scenar-
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(a) Data distribution of object classes (test set only) (b) Data distribution of scenarios (test set only)
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Figure 2. Data distribution of scenarios appeared in our test set.

ios for generic aerial tracking evaluation. Specifically, our
dataset includes indoor scenarios in human daily scenes,
which provides potentials on broad applications of aerial
robots. Besides, multiple viewpoints and challenges guar-
antee that the proposed D2Cube maintains a high diversity.

B. More Results
Attribute-based performance. For in-depth analysis,

we provide attribute-based performance in term of F-score
on all compared trackers. The results are shown in Fig. 3.
Obviously, ProTrack [6] shows outstanding performance on
all attributes, while our proposed EMT ranks the second on
17 of 18 attributes with a very compact model size. Be-
sides, most tested trackers show consistent trends in some
attributes, e.g., low performance on illumination variation
and dark scenes, indicating that environment-level attributes
are very challenging for state-of-the-art trackers. While
trackers show much better performance on classical track-
ing challenges, i.e., out-of-view, motion blur, scale variation
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and so on. In terms of RGBD trackers, DeT [5] performs
well on scale variation, except for the outstanding perfor-
mance of ProTrack and the proposed EMT. On the other
hand, RGB trackers perform generally lower than RGBD
trackers. Notably, some popular efficient trackers, e.g.,
HiFT [2], DaSiamRPN [8] and TCTrack [3], show severe
performance degradation in terms of illumination change,
overexposure, and background clutter, demonstrating that
current color-only aerial trackers are very sensitive to the
overall appearance change.

Visualized results. To vividly show the performance of
representative trackers on our proposed D2Cube, we pro-
vide more visualized results in Fig. 4. The compared track-
ers include ProTrack [6], DeT [5], HCAT [4], UDAT [7]
and the proposed EMT. 18 video sequences covering 18 at-
tributes are shown for comparison. As shown, our EMT can
perform well against most of the challenges. Specifically,
our EMT can address difficulties like BC (background clut-
ter) and CM (camera motion), in which tracking failures are
presented by color-only trackers. Failed cases of EMT are
given in OE (overexposure) and SF (sensor failure), which
represent some extreme challenging tracking scenarios.
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Figure 3. Attribute-based performance in terms of F-score. IC = Illumination Change, DS = Dark Scenes, FO = Full Occlusion, OE =
Overexposure, BC = Background Clutter, TR = Target Rotation, PO = Partial Occlusion, ST = Similar Targets, CO = Composite Object,
LR = Low Resolution, FM = Fast Motion, CM = Camera Motion, DF = Deformation, VC = Viewpoint Change, SV = Scale Variation, SF
= Sensor Failure, MB = Motion Blur, OV = Out-of-view.
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Figure 4. Visualized results for different challenges in D2Cube. Zoom in for details.


