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1. Comparison for Cross-Dataset Transfer
Similar to CoOp [4] and CoCoOp [3], we also evaluate

the generalizability of the KgCoOp by applying the learn-
able prompts inferred from the source dataset (ImageNet)
on the other downstream dataset. The related results are
shown in Table 1. As shown in Table 1, CoCoOp obtains
the best average performance of all existing methods. The
reason is that the prompts in CoCoOp are a combination of
textual prompts and visual descriptions, leading to CoCoOp
having high generalizability on unseen datasets. However,
CoCoOp is a time-consuming method. Different from Co-
CoOp, CoOp, ProGrad [5] and the proposed KgCoOp only
use textual-based prompts. Compared to CoOp and Pro-
Grad, KgCoOp obtains a higher performance on almost all
datasets except EuroSAT. The superior performance proves
that the proposed KgCoOp has a high generalizability for
cross-dataset transfer.

2. Effect of Context Length
For the learnable prompts, the context length is a critical

aspect. We thus analyze the effect of the context length in
the base-to-new generalization setting with the backbone of
ViT-16/B. Similar to CoOp [4], we study 4, 8, and 16 con-
text tokens. For the context length of 8 and 16, the prompt
is initialized with “X X ... X a photo of a [Class ]”. The av-
eraging performance on 11 datasets is summarized in Fig-
ure 1. We can observe that setting the context length as 8
obtains a higher performance than the other two settings on
all three metric terms. Furthermore, the learning prompt
with lengths of 4 and 16 obtain similar performance. How-
ever, for making a fair comparison with CoOp and CoCoOp,
the context length is set as 4 in our final model.

3. Effect of Initialization
To verify the impact of initialization for prompt tuning,

we conduct a comparison based on the word embeddings-
based initialization(‘w/ init’) and random initialization(‘w/o

Table 1. Comparison in the cross-dataset transfer learning by
learning the prompts from ImageNet(16-shot samples) with ViT-
16/B, and evaluating on the other 10 datasets. “tp” denotes the
“textual prompt”, and “v” denotes the visual information of each
instance.

Methods CoCoOp CoOp ProGrad KgCoOp

Prompts tp+v tp

Source ImageNet 71.02 71.51 72.24 70.66

Targets

Caltech101 94.43 93.70 91.52 93.92
OxfordPets 90.14 89.14 89.64 89.83
StandfordCars 65.32 64.51 62.39 65.41
Flowers 71.88 68.71 67.87 70.01
Food101 86.06 85.30 85.40 86.36
FGVCAircraft 22.94 18.47 20.61 22.51
SUN397 67.36 64.15 62.47 66.16
DTD 45.73 41.92 39.42 46.35
EuroSAT 45.37 46.39 43.46 46.04
UCF101 68.21 66.55 64.29 68.50
Avg. 65.74 63.88 62.71 65.51
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Figure 1. Effect of context length.

init’). The random initialization applies a zero-mean Gaus-
sian distribution with 0.02 standard deviation to initialize
the prompt tokens, and the word embeddings-based ini-
tialization uses the “a photo of a” to initialize the prompt
tokens. The averaging performance on 11 datasets is
summarized in Figure 2. We can observe that using the
word embedding-based initialization obtains a higher per-
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Figure 2. Effect of initialization.

formance in all three terms than random initialization.

4. Effect of hand-crafted prompts
As different hand-crafted prompts would provide differ-

ent knowledge to constrain the prompt tuning, we thus eval-
uate the effect of different hand-crafted prompts. Evaluation
on six hand-crafted prompts shows in Table 3, i.e., T1:‘{}’;
T2:‘a photo of a {}’; T3:‘itap of a {}’; T4:‘a photo of the
large {}’; T5:‘a {} in a video game’; T6:‘a photo of a {}, a
type of {}’. Although different hand-crafted prompots have
achieved different performnce, we observe that T1 without
using any prompts obtains the performance of 76.02%. Fur-
thermore, the more information given by the hand-crafted
prompts, the higher performance, e.g., T6 obtains the high-
est performance.

5. How to reduce the discrepancy between spe-
cial knowledge and general knowledge?

The key insight of our work is to reduce the discrep-
ancy between special knowledge and general knowledge
for improving the generability of unseen datasets. In Kg-
CoOp, Lkg is used to minimize the distance between the
general textual embeddings and specific textual embeddings
for reducing the discrepancy. For the CoOp-based meth-
ods, they exist other two ways to measure the discrepancy
between special knowledge and general knowledge besides
Lkg: 1) Lpt:reducing the distance between the tokens of the
learnable prompts and the fixed prompts; 2) Lkl: using the
Kullback-Leibler divergence measure the consistency be-
tween the predictions generated by the general textual em-
beddings and specific textual embeddings. We thus con-
duct a comparison among all three methods and summarize
the results in Table 4. As shown in Table 4, using Lpt ob-
tains a worse performance of H than CoOp, demonstrat-
ing the direct constrain of the similarity between prompts
is not a reasonable way. Different from Lpt, Lkg and Lkl

both obtain a higher performance than CoOp. Furthermore,
the proposed KgCoOp using Lkg obtains the best perfor-
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Figure 3. Failure cases analysis. We evaluate the distribution of
samples that are mis-classified by KgCoOp but correctly classified
by CoOp models
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Figure 4. Confusion matrix of the prediction.ls

mance in the terms of New and H. The superior performance
proves that it is reasonable to mitigate knowledge forgetting
by minimizing the distance between embeddings.

6. Failure cases

Similar to ProGrad, we analyze the failure cases where
KgCoOp predict incorrectly but CoOp gives right predic-
tions. Specifically, we count the percentage of the failure
cases that zero-shot CLIP models also fails in Figure 4. We
observe that a high proportion of the faiure cases are mis-
classified by CoOp model.

7. Disscussion about the generalization on new
class

As show in Table 2, the proposed methods obtains the
lower performance on the new class. The reason is that
the domain discrepancy between seen and new classes af-
fects the hardness of generalization to new classes. Spe-
cially, from the Table 3 in the paper, CoOp obtains more
than 10% New performance drop on DTD, EuroSAT, and
UCF101 datasets. The reason is that the new classes have
a serious domain gap with the seen classes, making the
learned prompt biased to the new classes (CoOp in Fig. 4).
KgCoOp constrains the learnable prompts to contain the
general knowledge in CLIP and discriminative to a new
class(Fig. 4). Therefore, KgCoOp significantly improves
CoOp for the new classes on those three datasets.



Table 2. Comparison in the base-to-new setting with different K-shot samples in terms of the average performance among all 11 datasets
and backbones(ViT-B/16 and ResNet-50).

Backbones Methods K=4 K=8 K=16
Base New H Base New H Base New H

CoOp 78.43 68.03 72.44 80.73 68.39 73.5 82.63 67.99 74.60
CoCoOp 76.72 73.34 74.85 78.56 72.0 74.9 80.47 71.69 75.83

ViT-B/16 ProGrad 79.18 71.14 74.62 80.62 71.02 75.2 82.48 70.75 76.16
KgCoOp 79.92 73.11 75.90 78.36 73.89 76.06 80.73 73.6 77.0

CoOp 72.06 59.69 65.29 74.72 58.05 65.34 77.24 57.4 65.86
CoCoOp 71.39 65.74 68.45 73.4 66.42 69.29 75.2 63.64 68.9

ResNet-50 ProGrad 73.88 64.95 69.13 76.25 64.74 70.03 77.98 64.41 69.94
KgCoOp 72.42 68.00 70.14 74.08 67.86 70.84 75.51 67.53 71.30

Table 3. Effect of hand-crafted prompts.

Methods CoOp CoCoOp ProGrad T1 T2

H 74.60 75.83 76.16 76.02 76.85

Methods T3 T4 T5 T6

H 76.23 76.71 76.12 77.0

Table 4. Comparison of different measurement methods on the
average performance of all 11 datasets in the base-to-new setting.

Methods Base New H

Baseline(CoOp) 82.63 67.99 74.60

CoOp+Lpt 78.84 70.67 74.53
CoOp+Lkl 80.42 72.43 76.22
CoOp+Lkg 80.73 73.6 77.0

8. Detailed Results

To verify the effectiveness of the proposed KgCoOp, we
compare KgCoOp with existing CoOp-based methods, i.e,
CoOp [4], CoCoOp [3], and ProGrad [5], based on dif-
ferent backbones and different K-shot samples. Specifily,
the CNN-based model ResNet-50 [2] and the transformer-
based model ViT-B/16 [1] are applied as the visual encoder
to extract the image’s description. Furthermore, three types
of few-shot settings, i.e., 4-shot, 8-shot, and 16-shot, are
conducted for comparison. The summarized averaged re-
sults are shown in Table 2. The detailed results of the back-
bone of ViT-B/16 are shown in Table 5 and Table 6 for
4-shot and 8-shot settings. For ResNet-50, the results of
4-shot, 8-shot, and 16-shot settings are shown in Table 7,
Table 8, and Table 8, respectively.
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Table 5. Comparison with existing methods in the base-to-new generalization based on the ViT-B/16 and 4-shot settings. The context
length M is 4 for prompot-based methods. H: Harmonic mean.

CoOp CoCoOp ProGrad KgCoOp
Datasets Base New H Base New H Base New H Base New H

ImageNet 73.60 63.29 68.06 75.46 69.58 72.40 74.24 65.47 69.58 74.87 69.09 71.86
Caltech101 97.27 93.01 95.09 97.25 94.90 96.06 97.37 93.92 95.61 97.53 94.43 95.95
OxfordPets 93.33 95.69 94.50 94.59 96.75 95.66 94.08 97.63 95.82 94.68 97.58 96.11
StandfordCars 70.92 69.38 70.14 67.71 75.37 71.33 72.69 69.88 71.26 69.25 74.98 72.00
Flowers 92.50 70.12 79.77 84.75 73.85 78.93 92.46 72.69 81.39 91.30 75.34 82.56
Food101 86.79 89.06 87.91 89.79 90.99 90.39 88.91 90.18 89.54 90.30 91.39 90.84
FGVCAircraft 33.21 28.57 30.72 32.07 33.93 32.97 33.73 30.09 31.81 34.21 32.81 33.50
SUN397 76.49 64.56 70.02 77.57 76.96 77.26 77.72 71.93 74.71 78.87 75.64 77.22
DTD 71.26 50.93 59.40 67.44 56.00 61.19 71.06 52.58 60.44 73.65 57.21 64.40
EuroSAT 82.56 53.04 64.59 79.27 65.44 71.69 82.48 56.43 67.01 82.63 59.98 69.51
UCF101 79.97 65.98 72.30 78.01 73.07 75.46 81.30 76.02 78.57 80.80 75.77 78.20

Avg. 78.43 68.03 72.44 76.72 73.35 74.85 79.18 71.14 74.62 78.92 73.11 75.90

Table 6. Comparison with existing methods in the base-to-new generalization based on the ViT-B/16 and 8-shot settings. The context
length M is 4 for prompot-based methods. H: Harmonic mean.

CoOp CoCoOp ProGrad KgCoOp
Datasets Base New H Base New H Base New H Base New H

ImageNet 75.22 65.91 70.26 75.52 70.28 72.81 75.72 66.76 70.96 75.84 69.33 72.44
Caltech101 97.81 92.58 95.12 97.76 93.63 95.65 98.00 93.38 95.63 97.68 94.10 95.86
OxfordPets 94.19 96.11 95.14 95.50 97.69 96.58 94.47 97.03 95.73 94.81 97.58 96.18
StandfordCars 73.20 67.44 70.20 69.70 74.13 71.85 75.08 70.63 72.79 69.66 75.40 72.42
Flowers 96.17 69.41 80.63 92.24 72.77 81.36 93.80 72.20 81.59 87.72 74.75 80.72
Food101 87.27 86.96 87.11 89.60 90.79 90.19 89.48 89.90 89.69 90.46 91.63 91.04
FGVCAircraft 37.01 38.45 37.72 33.71 32.15 32.91 36.89 31.67 34.08 34.53 34.95 34.74
SUN397 78.61 66.25 71.90 78.05 76.29 77.16 79.21 70.77 74.75 79.37 76.85 78.09
DTD 76.97 51.81 61.93 73.03 57.24 64.18 74.42 52.38 61.48 69.72 56.44 62.38
EuroSAT 83.27 50.59 62.94 78.68 56.03 65.45 82.27 58.52 68.39 81.07 63.13 70.98
UCF101 82.85 64.32 72.42 80.40 71.68 75.79 82.61 73.75 77.93 81.16 78.65 79.89

Avg. 80.74 68.39 73.51 78.56 72.06 74.90 80.62 71.02 75.21 78.37 73.89 76.06

Table 7. Comparison with existing methods in the base-to-new generalization based on the ResNet-50 and 4-shot settings. The context
length M is 4 for prompot-based methods. H: Harmonic mean.

CoOp CoCoOp ProGrad KgCoOp
Datasets Base New H Base New H Base New H Base New H

ImageNet 64.53 54.47 59.07 67.80 62.45 65.02 65.23 55.96 60.24 67.13 61.96 64.44
Caltech101 94.06 87.01 90.40 95.03 90.47 92.69 94.47 89.26 91.79 94.43 91.56 92.97
OxfordPets 87.36 93.49 90.32 91.62 94.99 93.27 91.25 94.93 93.05 92.29 94.13 93.20
StandfordCars 61.84 57.25 59.46 60.58 64.78 62.61 64.98 61.92 63.41 60.53 67.42 63.79
Flowers 89.71 57.68 70.21 81.86 71.44 76.30 90.12 68.82 78.04 78.12 72.77 75.35
Food101 77.20 76.85 77.02 83.19 84.53 83.85 81.48 82.54 82.01 83.56 84.86 84.20
FGVCAircraft 22.19 18.36 20.09 22.55 25.03 23.73 23.47 18.44 20.65 22.53 26.83 24.49
SUN397 70.68 60.87 65.41 72.03 71.76 71.89 73.53 67.04 70.14 73.68 71.92 72.79
DTD 64.74 47.18 54.58 61.77 53.34 57.25 67.90 52.94 59.49 66.24 53.54 59.22
EuroSAT 86.39 46.91 60.80 75.60 37.68 50.29 84.74 60.46 70.57 84.87 52.55 64.91
UCF101 73.96 56.53 64.08 73.27 66.70 69.83 75.56 62.13 68.19 73.20 70.43 71.79

Avg. 72.06 59.69 65.29 71.39 65.74 68.45 73.88 64.95 69.13 72.42 68.00 70.14



Table 8. Comparison with existing methods in the base-to-new generalization based on the ResNet-50 and 8-shot settings. The context
length M is 4 for prompot-based methods. H: Harmonic mean.

CoOp CoCoOp ProGrad KgCoOp
Datasets Base New H Base New H Base New H Base New H

ImageNet 66.69 57.36 61.67 68.06 62.71 65.28 67.25 57.83 62.19 67.62 62.27 64.83
Caltech101 94.40 83.88 88.83 95.31 91.05 93.13 95.12 88.97 91.94 94.92 91.88 93.38
OxfordPets 90.02 93.36 91.66 92.45 95.73 94.06 91.90 94.59 93.23 92.36 94.37 93.35
StandfordCars 65.49 55.89 60.31 61.61 65.98 63.72 68.33 60.10 63.95 60.91 66.55 63.61
Flowers 93.07 57.59 71.15 85.25 68.56 76.00 92.46 67.59 78.09 87.18 72.67 79.27
Food101 78.55 78.03 78.29 84.09 85.37 84.73 82.50 83.36 82.93 83.74 85.21 84.47
FGVCAircraft 25.01 18.04 20.96 23.17 23.60 23.38 27.71 20.58 23.62 24.15 26.83 25.42
SUN397 73.58 60.95 66.67 73.53 72.52 73.02 75.13 67.03 70.85 74.63 72.21 73.40
DTD 71.53 40.34 51.59 68.29 49.76 57.57 71.61 47.58 57.17 69.25 51.57 59.12
EuroSAT 85.88 42.46 56.83 80.43 48.75 60.71 87.45 59.75 70.99 83.87 52.80 64.80
UCF101 77.69 50.64 61.31 75.23 66.54 70.62 79.30 64.81 71.33 76.28 70.18 73.10

Avg. 74.72 58.05 65.34 73.40 66.42 69.29 76.25 64.74 70.03 74.08 67.87 70.84

Table 9. Comparison with existing methods in the base-to-new generalization based on the ResNet-50 and 16-shot settings. The context
length M is 4 for prompot-based methods. H: Harmonic mean.

CoOp CoCoOp ProGrad KgCoOp
Datasets Base New H Base New H Base New H Base New H

ImageNet 68.57 58.76 63.29 68.21 62.28 65.11 69.13 57.39 62.72 67.67 62.45 64.96
Caltech101 95.20 87.55 91.21 95.40 90.28 92.77 95.72 89.92 92.73 95.35 91.92 93.60
OxfordPets 90.15 90.70 90.42 92.10 95.81 93.92 92.36 94.48 93.41 92.57 94.61 93.58
StandfordCars 68.89 57.13 62.46 63.53 64.46 63.99 71.79 59.36 64.99 63.28 66.92 65.05
Flowers 95.22 59.53 73.26 90.66 67.19 77.18 94.71 68.86 79.74 91.45 71.75 80.41
Food101 81.70 78.13 79.88 84.44 85.80 85.11 83.77 83.74 83.75 83.90 85.23 84.56
FGVCAircraft 28.39 20.02 23.48 23.98 21.05 22.42 30.17 19.70 23.84 24.91 25.69 25.29
SUN397 76.33 62.89 68.96 74.64 72.78 73.70 76.90 68.09 72.23 75.33 72.25 73.76
DTD 75.12 37.08 49.65 71.18 47.42 56.92 73.80 46.38 56.96 74.73 48.39 58.74
EuroSAT 90.25 31.30 46.48 86.13 31.65 46.29 88.44 49.49 63.47 84.28 53.53 65.47
UCF101 79.78 48.31 60.18 76.92 61.38 68.28 81.04 60.07 69.00 77.16 70.13 73.48

Avg. 77.24 57.40 65.86 75.20 63.65 68.94 77.98 63.41 69.94 75.51 67.53 71.30


