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1. Comparison for Cross-Dataset Transfer

Similar to CoOp [4] and CoCoOp [3], we also evaluate
the generalizability of the KgCoOp by applying the learn-
able prompts inferred from the source dataset (ImageNet)
on the other downstream dataset. The related results are
shown in Table 1. As shown in Table 1, CoCoOp obtains
the best average performance of all existing methods. The
reason is that the prompts in CoCoOp are a combination of
textual prompts and visual descriptions, leading to CoCoOp
having high generalizability on unseen datasets. However,
CoCoOp is a time-consuming method. Different from Co-
CoOp, CoOp, ProGrad [5] and the proposed KgCoOp only
use textual-based prompts. Compared to CoOp and Pro-
Grad, KgCoOp obtains a higher performance on almost all
datasets except EuroSAT. The superior performance proves
that the proposed KgCoOp has a high generalizability for
cross-dataset transfer.

2. Effect of Context Length

For the learnable prompts, the context length is a critical
aspect. We thus analyze the effect of the context length in
the base-to-new generalization setting with the backbone of
ViT-16/B. Similar to CoOp [4], we study 4, 8, and 16 con-
text tokens. For the context length of 8 and 16, the prompt
is initialized with “X X ... X a photo of a [Class ]”. The av-
eraging performance on 11 datasets is summarized in Fig-
ure 1. We can observe that setting the context length as 8
obtains a higher performance than the other two settings on
all three metric terms. Furthermore, the learning prompt
with lengths of 4 and 16 obtain similar performance. How-
ever, for making a fair comparison with CoOp and CoCoOp,
the context length is set as 4 in our final model.

3. Effect of Initialization

To verify the impact of initialization for prompt tuning,
we conduct a comparison based on the word embeddings-
based initialization(‘w/ init”) and random initialization(‘w/o

Table 1. Comparison in the cross-dataset transfer learning by
learning the prompts from ImageNet(16-shot samples) with ViT-
16/B, and evaluating on the other 10 datasets. “tp” denotes the
“textual prompt”, and “v” denotes the visual information of each
instance.

| Methods | CoCoOp | CoOp  ProGrad  KgCoOp
| Prompts | | tp
Source | ImageNet | 71.02 | 7151 72.24 70.66
Caltech101 94.43 93.70 91.52 93.92
OxfordPets 90.14 89.14 89.64 89.83
StandfordCars 65.32 64.51 62.39 65.41
Flowers 71.88 68.71 67.87 70.01
Food101 86.06 85.30 85.40 86.36
Targets FGVCAircraft 22.94 18.47 20.61 22.51
SUN397 67.36 64.15 62.47 66.16
DTD 45.73 41.92 39.42 46.35
EuroSAT 45.37 46.39 43.46 46.04
UCF101 68.21 66.55 64.29 68.50
Avg. 65.74 63.88 62.71 65.51
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Figure 1. Effect of context length.

init’). The random initialization applies a zero-mean Gaus-
sian distribution with 0.02 standard deviation to initialize
the prompt tokens, and the word embeddings-based ini-
tialization uses the “a photo of a” to initialize the prompt
tokens. The averaging performance on 11 datasets is
summarized in Figure 2. We can observe that using the
word embedding-based initialization obtains a higher per-
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Figure 2. Effect of initialization.

formance in all three terms than random initialization.

4. Effect of hand-crafted prompts

As different hand-crafted prompts would provide differ-
ent knowledge to constrain the prompt tuning, we thus eval-
uate the effect of different hand-crafted prompts. Evaluation
on six hand-crafted prompts shows in Table 3, i.e., T1:°{}’;
T2:‘a photo of a {}’; T3:‘itap of a {}’; T4:‘a photo of the
large {}’; T5:‘a {} in a video game’; T6:‘a photo of a {}, a
type of {}’. Although different hand-crafted prompots have
achieved different performnce, we observe that T1 without
using any prompts obtains the performance of 76.02%. Fur-
thermore, the more information given by the hand-crafted
prompts, the higher performance, e.g., T6 obtains the high-
est performance.

5. How to reduce the discrepancy between spe-
cial knowledge and general knowledge?

The key insight of our work is to reduce the discrep-
ancy between special knowledge and general knowledge
for improving the generability of unseen datasets. In Kg-
CoOp, Ly is used to minimize the distance between the
general textual embeddings and specific textual embeddings
for reducing the discrepancy. For the CoOp-based meth-
ods, they exist other two ways to measure the discrepancy
between special knowledge and general knowledge besides
Lig: 1) Ly;:reducing the distance between the tokens of the
learnable prompts and the fixed prompts; 2) Ly;: using the
Kullback-Leibler divergence measure the consistency be-
tween the predictions generated by the general textual em-
beddings and specific textual embeddings. We thus con-
duct a comparison among all three methods and summarize
the results in Table 4. As shown in Table 4, using £, ob-
tains a worse performance of H than CoOp, demonstrat-
ing the direct constrain of the similarity between prompts
is not a reasonable way. Different from L, Liq and Ly
both obtain a higher performance than CoOp. Furthermore,
the proposed KgCoOp using Ly, obtains the best perfor-
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Figure 3. Failure cases analysis. We evaluate the distribution of
samples that are mis-classified by KgCoOp but correctly classified
by CoOp models
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mance in the terms of New and H. The superior performance
proves that it is reasonable to mitigate knowledge forgetting
by minimizing the distance between embeddings.

6. Failure cases

Similar to ProGrad, we analyze the failure cases where
KgCoOp predict incorrectly but CoOp gives right predic-
tions. Specifically, we count the percentage of the failure
cases that zero-shot CLIP models also fails in Figure 4. We
observe that a high proportion of the faiure cases are mis-
classified by CoOp model.

7. Disscussion about the generalization on new
class

As show in Table 2, the proposed methods obtains the
lower performance on the new class. The reason is that
the domain discrepancy between seen and new classes af-
fects the hardness of generalization to new classes. Spe-
cially, from the Table 3 in the paper, CoOp obtains more
than 10% New performance drop on DTD, EuroSAT, and
UCF101 datasets. The reason is that the new classes have
a serious domain gap with the seen classes, making the
learned prompt biased to the new classes (CoOp in Fig. 4).
KgCoOp constrains the learnable prompts to contain the
general knowledge in CLIP and discriminative to a new
class(Fig. 4). Therefore, KgCoOp significantly improves
CoOp for the new classes on those three datasets.



Table 2. Comparison in the base-to-new setting with different K -shot samples in terms of the average performance among all 11 datasets

and backbones(ViT-B/16 and ResNet-50).

Backbones | Methods K=4 K=8 K=16
Base New H Base  New H Base  New H

CoOp 7843 68.03 7244 || 80.73 6839 735 82.63 67.99 74.60

CoCoOp | 76.72 7334 74.85 || 7856 72.0 74.9 8047 71.69 75.83

ViT-B/16 ProGrad | 79.18 71.14 74.62 || 80.62 71.02 752 8248 70.75 76.16

KgCoOp | 7992 73.11 7590 || 7836 73.89 76.06 || 80.73  73.6 77.0

CoOp 72.06 59.69 6529 || 7472 58.05 6534 || 7724 574  65.86

CoCoOp | 71.39 65.74 68.45 734 6642 69.29 752 63.64 689

ResNet-50 | ProGrad | 73.88 6495 69.13 || 76.25 6474 70.03 || 77.98 6441 69.94

KgCoOp | 72.42 68.00 70.14 || 74.08 67.86 70.84 || 75.51 67.53 71.30

Table 3. Effect of hand-crafted prompts. References

Methods ‘ CoOp CoCoOp  ProGrad T1 ™ [1] A?exey Dpsovitskiy, L}Jcas Beyer,. Alexander Kolesni.kov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
H | 7460 7583 76.16  76.02  76.85 Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
Methods ‘ T3 T4 Ts T6 vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is
worth 16x16 words: Transformers for image recognition at
H ‘ 76.23 76.71 76.12 77.0 scale. In 9th International Conference on Learning Represen-

Table 4. Comparison of different measurement methods on the
average performance of all 11 datasets in the base-to-new setting.

Methods ‘ Base New H

Baseline(CoOp) | 82.63 67.99 74.60

C00p+£pt 78.84 70.67 74.53

CoOp+L; 80.42 7243 76.22

CoOp+Lyy 80.73 73.6 77.0
8. Detailed Results

To verify the effectiveness of the proposed KgCoOp, we
compare KgCoOp with existing CoOp-based methods, i.e,
CoOp [4], CoCoOp [3], and ProGrad [5], based on dif-
ferent backbones and different K -shot samples. Specifily,
the CNN-based model ResNet-50 [2] and the transformer-
based model ViT-B/16 [1] are applied as the visual encoder
to extract the image’s description. Furthermore, three types
of few-shot settings, i.e., 4-shot, 8-shot, and 16-shot, are
conducted for comparison. The summarized averaged re-
sults are shown in Table 2. The detailed results of the back-
bone of ViT-B/16 are shown in Table 5 and Table 6 for
4-shot and 8-shot settings. For ResNet-50, the results of
4-shot, 8-shot, and 16-shot settings are shown in Table 7,
Table 8, and Table 8, respectively.
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Table 5. Comparison with existing methods in the base-to-new generalization based on the ViT-B/16 and 4-shot settings. The context
length M is 4 for prompot-based methods. H: Harmonic mean.

CoOp CoCoOp ProGrad KgCoOp
Datasets Base New H Base New H Base New H Base New H
ImageNet 73.60 6329 68.06 | 7546 69.58 7240 | 7424 6547 69.58 | 74.87 69.09 71.86

Caltech101 9727 93.01 95.09 | 97.25 9490 96.06 | 97.37 9392 9561 | 97.53 94.43 9595
OxfordPets 9333  95.69 9450 | 9459 96.75 95.66 | 94.08 97.63 95.82 | 94.68 97.58 96.11
StandfordCars | 70.92 69.38 70.14 | 67.71 7537 7133 | 72.69 69.88 71.26 | 69.25 7498 72.00

Flowers 92.50 70.12 79.77 | 8475 73.85 78.93 | 9246 7269 81.39 | 91.30 7534 82.56
Food101 86.79 89.06 87.91 | 89.79 90.99 90.39 | 8891 90.18 89.54 | 90.30 91.39 90.84
FGVCAircraft | 3321 28.57 30.72 | 3207 3393 3297 | 3373 30.09 31.81 | 3421 3281 33.50
SUN397 7649 6456 7002 | 77.57 7696 7726 | 77.72 7193 7471 | 78.87 75.64 77.22
DTD 7126 5093 5940 | 67.44 5600 6119 | 71.06 5258 6044 | 73.65 57.21 64.40
EuroSAT 82.56 53.04 6459 | 7927 6544 7169 | 8248 5643 67.01 | 82.63 59.98 69.51
UCF101 79.97 6598 7230 | 7801 73.07 7546 | 8130 76.02 78.57 | 80.80 75.77 7820
Avg. | 7843  68.03 7244 | 7672 7335 7485 | 79.18 7114 74.62 | 7892 7311 7590

Table 6. Comparison with existing methods in the base-to-new generalization based on the ViT-B/16 and 8-shot settings. The context
length M is 4 for prompot-based methods. H: Harmonic mean.

CoOp CoCoOp ProGrad KgCoOp
Datasets Base New H Base New H Base New H Base New H
ImageNet 7522 6591 70.26 | 75.52 70.28 72.81 | 75.72 66.76 70.96 | 75.84 69.33 72.44

Caltech101 97.81 9258 9512 | 97.76 93.63 95.65 | 98.00 9338 95.63 | 97.68 94.10 95.86
OxfordPets 94.19 96.11 95.14 | 9550 97.69 96.58 | 9447 97.03 9573 | 9481 97.58 96.18
StandfordCars | 73.20 67.44 70.20 | 69.70 74.13 71.85 | 75.08 70.63 7279 | 69.66 7540 72.42

Flowers 96.17 6941 80.63 | 92.24 7277 81.36 | 93.80 7220 81.59 | 87.72 74775 80.72
Food101 87.27 8696 87.11 | 89.60 90.79 90.19 | 89.48 89.90 89.69 | 9046 91.63 91.04
FGVCAircraft | 37.01 3845 37.72 | 33.71 32.15 3291 | 36.80 31.67 34.08 | 3453 3495 34.74
SUN397 78.61 6625 7190 | 7805 7629 77.16 | 79.21 70.77 7475 | 7937 76.85 78.09
DTD 76.97 51.81 6193 | 73.03 5724 64.18 | 7442 5238 6148 | 69.72 5644 62.38
EuroSAT 83.27 5059 6294 | 78.68 56.03 6545 | 8227 58.52 6839 | 81.07 63.13 7098
UCF101 8285 6432 7242 | 8040 71.68 75779 | 82.61 73.75 7793 | 81.16 78.65 79.89
Avg. 80.74 68.39 73.51 | 7856 72.06 7490 | 80.62 71.02 75.21 ‘ 78.37 73.89 76.06

Table 7. Comparison with existing methods in the base-to-new generalization based on the ResNet-50 and 4-shot settings. The context
length M is 4 for prompot-based methods. H: Harmonic mean.

CoOp CoCoOp ProGrad KgCoOp
Datasets Base New H Base New H Base New H Base New H
ImageNet 64.53 5447 59.07 | 67.80 6245 65.02 | 6523 5596 60.24 | 67.13 6196 64.44

Caltech101 94.06 87.01 90.40 | 95.03 90.47 92.69 | 9447 89.26 91.79 | 9443 9156 92.97
OxfordPets 8736 9349 9032 | 91.62 9499 9327 | 91.25 9493 93.05 | 9229 94.13 93.20
StandfordCars | 61.84 57.25 59.46 | 60.58 64.78 62.61 | 6498 6192 63.41 | 60.53 6742 63.79

Flowers 89.71 57.68 70.21 | 81.86 7144 7630 | 90.12 68.82 78.04 | 78.12 72.77 7535
Food101 7720 76.85 77.02 | 83.19 8453 83.85 | 81.48 8254 82.01 | 83.56 84.86 84.20
FGVCAircraft | 22.19 18.36 20.09 | 22.55 25.03 23.773 | 2347 1844 20.65 | 22.53 26.83 24.49
SUN397 70.68 60.87 6541 | 72.03 71.76 71.89 | 73.53 67.04 70.14 | 73.68 7192 72.79
DTD 64.74 47.18 5458 | 61.77 5334 5725 | 67.90 5294 5949 | 66.24 53.54 59.22
EuroSAT 86.39 4691 60.80 | 75.60 37.68 50.29 | 84.74 60.46 70.57 | 84.87 52.55 6491
UCF101 7396 56.53 64.08 | 73.27 66.70 69.83 | 75.56 62.13 68.19 | 73.20 70.43 71.79

Avg. 72.06 59.69 6529 | 71.39 6574 68.45 ‘ 73.88 6495 69.13 ‘ 7242 68.00 70.14




Table 8. Comparison with existing methods in the base-to-new generalization based on the ResNet-50 and 8-shot settings. The context
length M is 4 for prompot-based methods. H: Harmonic mean.

CoOp CoCoOp ProGrad KgCoOp
Datasets Base New H Base New H Base New H Base New H
ImageNet 66.69 5736 61.67 | 68.06 6271 6528 | 67.25 57.83 62.19 | 67.62 6227 64.83
Caltech101 9440 83.88 88.83 | 95.31 91.05 93.13 | 95.12 8897 91.94 | 9492 91.88 93.38

OxfordPets 90.02 9336 91.66 | 9245 9573 94.06 | 91.90 94.59 9323 | 92.36 9437 93.35
StandfordCars | 6549 55.89 6031 | 61.61 6598 63.72 | 68.33 60.10 6395 | 6091 66.55 63.61

Flowers 93.07 57.59 T71.15 | 8525 6856 76.00 | 9246 67.59 78.09 | 87.18 72.67 79.27
Food101 78.55 78.03 7829 | 84.09 8537 84.73 | 82.50 83.36 82.93 | 83.74 8521 84.47
FGVCAircraft | 25.01 18.04 2096 | 23.17 23.60 2338 | 27.71 20.58 23.62 | 24.15 26.83 2542
SUN397 73.58 6095 66.67 | 73.53 7252 73.02 | 75.13 67.03 70.85 | 74.63 7221 73.40
DTD 71.53 4034 5159 | 6829 49.76 57.57 | 71.61 47.58 57.17 | 69.25 51.57 59.12
EuroSAT 8588 4246 56.83 | 8043 48.75 60.71 | 87.45 59.75 7099 | 83.87 52.80 64.80
UCF101 77.69 50.64 6131 | 7523 66.54 70.62 | 7930 64.81 7133 | 76.28 70.18 73.10
Avg. 7472 58.05 6534 | 7340 6642 69.29 ‘ 76.25 64.74 70.03 | 74.08 67.87 70.84

Table 9. Comparison with existing methods in the base-to-new generalization based on the ResNet-50 and 16-shot settings. The context
length M is 4 for prompot-based methods. H: Harmonic mean.

CoOp CoCoOp ProGrad KgCoOp
Datasets Base New H Base New H Base New H Base New H
ImageNet 68.57 58.76 63.29 | 68.21 6228 65.11 | 69.13 57.39 62.72 | 67.67 6245 64.96

Caltech101 9520 87.55 91.21 | 9540 90.28 9277 | 95.72 8992 9273 | 9535 91.92 93.60
OxfordPets 90.15 90.70 90.42 | 92.10 95.81 9392 | 9236 94.48 9341 | 92.57 94.61 93.58
StandfordCars | 68.89 57.13 62.46 | 63.53 6446 6399 | 71.79 5936 64.99 | 63.28 66.92 65.05

Flowers 9522 5953 7326 | 90.66 67.19 77.18 | 94.71 6886 79.74 | 9145 71.75 80.41
Food101 81.70 78.13 79.88 | 84.44 85.80 85.11 | 83.77 83.74 83.75 | 83.90 8523 84.56
FGVCAircraft | 28.39 20.02 23.48 | 23.98 21.05 22.42 | 30.17 19.70 23.84 | 2491 25.69 2529
SUN397 7633 6289 68.96 | 74.64 72778 73.70 | 76.90 68.09 72.23 | 7533 7225 73.76
DTD 75.12  37.08 49.65 | 71.18 47.42 5692 | 73.80 4638 56.96 | 74.73 4839 58.74
EuroSAT 90.25 3130 46.48 | 86.13 31.65 46.29 | 88.44 49.49 6347 | 84.28 53.53 6547
UCF101 79.78 4831 60.18 | 76.92 6138 68.28 | 81.04 60.07 69.00 | 77.16 70.13 73.48

Avg. 7724 5740 6586 | 7520 63.65 68.94 ‘ 7798 6341 6994 | 7551 6753 71.30




