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This supplementary material provides more details of the
Gradient Switching Strategy (GSS), including the theoret-
ical deductions of gradient analysis, effectiveness analy-
sis of GSS, details about GSS combination, details about
dataset settings, ablation study, limitation of GSS, and
source codes, which are given in the ’code.zip’ file.

A. Theoretical Analysis of Gradient
To investigate how existing methods work, we ana-

lyze their training gradients, including robust loss func-
tions (Symmetric Learning Loss [13], Generalized Cross-
Entropy Loss [16], Early-Learning Regularization [8], Peer
Loss [10]), sample reweighting (EG Reweighting [11],
CIW [4]), and sample cleaning (Co-teaching [2], Di-
videMix [5]).

A.1. Gradient Analysis of Cross-Entropy

As mentioned in the original paper, the update of model
weights is related to two terms: gradient weight and feature
direction, which are denoted as ∂L

∂zk
and ∂zk

∂ml . According
to the methodology, almost all existing methods optimize
the gradient weight term to reduce the influence of uncer-
tain samples. So we analyze this term of various existing
methods in this section. First, the gradient weight of Cross-
Entropy (CE) loss can be derived as:
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∂pỹ
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where ỹ denotes the annotated label, K denotes the amount
of categories, and pk′ denotes the prediction on k′-th cate-
gory. Since Lce(ỹ) = − log(pỹ), the first term in Eqn. 1
can be derived as:
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pỹ
. (2)

For the second term, the prediction p is obtained by the Soft-
max function. Consequently, the gradient can be derived as:

∂pỹ
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In summary, the gradient weight of CE can be derived based
on Eqn. 1-3:

∂Lce(ỹ)

∂zk
= pk − qk, (4)

where qk = 1 [ỹ = k]. Since pk ∈ (0, 1), the gradient
weight is negative on the category of the annotated label
and positive on the others. If annotated labels are noisy,
misleading gradient directions will damage the model train-
ing.

A.2. Gradient Analysis of Existing Methods

Compared to the CE, existing methods optimize the gra-
dient weight term to reduce the influence of noise sam-
ples. We illustrate the gradient weight of various methods
in Table S1. Sample cleaning is a special case of sample
reweighting with binary weights, which simply adds an ad-
ditional multiplier for the gradient weight of each sample.
For robust loss functions, the formulas of gradient weight
are analyzed in the following.

For Symmetric Learning (SL) loss [13], the function and
its gradient weight are given as follows:

Lsl = α

(∑
k

−qk log pk

)
+ β
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−pk log qk

)
= α− log pỹ + β (−A(1− pỹ)) ,

(5)

∂Lsl

∂zk
= (α+ β|A|pỹ) (pk − yk) , (6)

where qk = 1 [ỹ = k], zk denotes the logit on k-th cate-
gory, α and β are two positive hyper-parameters, A is set to
a negative constant to replace − log 0. It can be seen that
compared with CE, the gradient weight of SL has an addi-
tional non-negative term α+ β|A|pỹ , which is linearly cor-
related with pỹ . For the samples with low confidence, the
small gradient weight will suppress the influence of noise.

Generalized Cross Entropy (GCE) [16] loss is another
example of robust learning. The function and its gradient
weight are given as follows:

Lgce =
1− (pỹ)

γ

γ
, (7)



Method Formula of gradient weight ∂L(ỹ)/∂zk
Cross Entropy pk − qk

GCE [16] pγ
ỹ
(pk − qk)

SL [13] (α+ β|A|py)(pk − qk)

ELR [8] (pk − qk) +
∑

i pip̂i−p̂k
1−

∑
i pip̂i

θpk

Peer Loss [10] (p
(n)
k − q

(n)
k )− (p

(n1)
k − q

(n2)
k )

EG Reweighting [11] wEG (pk − qk)

CIW [4] wCIW (pk − qk)

Co-teaching [2] 1 [L(p∗)y < τ ′] (pk − qk)

DivideMix [5] 1 [GMM (L(p∗)y) > τ ′′] (pk − qk)

Table S1. The summarized gradient weight of existing methods.
Here qk = 1 [ỹ = k].

∂Lgce

∂zk
= pγỹ(pk − yk), (8)

where γ is the hyper-parameter which satisfies γ ∈ (0, 1].
The additional term pỹ(1 − pỹ)

γ−1 is also non-negative,
which will be minimized if pỹ is low.

Early Learning Regularization (ELR) [8] sets the previ-
ous model predictions as targets, which is defined as:

Lelr = − log pỹ + θ log (1− ⟨p, q⟩) , (9)

where θ denotes the weight of early learning regularization,
q denotes the output of the model in the last epoch, ⟨p, q⟩
denotes the inner product of prediction p and the prediction
of the model in last epoch. The gradient of the latter term
w.r.t. the prediction pi is given as follows:
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In summary, the gradient weight of ELR+ is derived as:

∂Lelr

∂zk
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θ (
∑

i piqi − qk)

1−
∑

i piqi
pk. (12)

Compared with SL loss and GCE loss, ELR+ has the differ-
ent gradient weight, which does not employ a non-negative
multiplier to (pk − yk). According to the default setting of

ELR, θ = 3 is applied for CIFAR-10 [3], and θ = 7 is ap-
plied for CIFAR-100. The additional term is negative if the
prediction of the model in the last epoch qk is highly confi-
dent, rectifying the gradient weight to the right direction for
the true category. Conversely, the additional term is positive
for the category with low confidence in the last epoch. So
that the gradient weight is positive even with the noisy label
yk = 1.

As mentioned in the original paper, these methods are es-
sentially enhancing or inhibiting the gradient weight term.
Though these methods avoid the negative effect of the noise,
the positive effect of hard samples on the model is also sup-
pressed. Also, the misidentified samples cause continuous
damage to the training. That is why there is a big gap be-
tween these methods and the model trained by clean data.

B. Effectiveness Analysis of GSS

In Section 5.3 of the original paper, the effectiveness of
gradient switching is analyzed. The theoretical analysis as-
sumes the activation feature map a and gradient direction d
of the same sample is basically constant in a small number
of iterations. This section conducts experimental analyses
to compare the activation feature map and gradient direction
of the same sample during training.

The original paper gives the gradient bias caused by each
sample within a small number of iterations E , derived as:

∆g =

E∑
e

µae ⊗
∣∣deỹ − dey

∣∣ , (13)

where ∆g denotes the gradient bias, ⊗ denotes the convo-
lution operation, y denotes the true label, ỹ denotes the an-
notated noisy label, E denotes a small amount of epochs, dey
denotes the shorthand for the gradient direction ∂zy/∂m

l

on e-th epoch, and µ denotes the learning rate. After as-
suming the activation feature map a and gradient direction
d of the same sample is basically constant in a small number
of iterations, the total bias is simplified as:

∆g′ = µa⊗
∣∣∣E(dỹ − dy

)∣∣∣, (14)

where dy and dỹ denote the gradient direction of y and ỹ
category on current epoch.

To demonstrate this assumption, we conduct experi-
ments on the activation feature map and gradient direction
of various epochs during training. Ten samples from each
category are randomly selected from the CIFAR-10 dataset.
For each sample, the activation feature map and gradient
direction of the last convolution layer is selected for visu-
alization. Since deep convolution layers extract more com-
plex features, the difference during training will be larger
than that of shallow layers. Consequently, demonstrating



Figure S1. The visualization of the activation feature map a during training. Ten samples from each category are randomly selected from
the CIFAR-10 dataset. The activation feature maps are obtained from the last convolution layer and normalized in each dimension. Each
sub-figure denotes the normalized feature map distribution during training, and each line in these sub-figures represents a sample. The
visualization results during epoch 20 ∼ 100 are given to show the difference of activation feature maps.

the biases in deep layers are neglected also means the bi-
ases in shallow layers are neglected. The distributions are
normalized in each dimension of feature maps and gradient
directions. The visualization results are shown in Fig. S1

(activation feature map) and Fig. S2 (gradient direction).

From the visualization results, it can be seen that both ac-
tivation feature map a and gradient direction d have small
differences during training. To be noted, the calculation of



Figure S2. The visualization of the gradient direction d during training. Ten samples from each category are randomly selected from the
CIFAR-10 dataset. The activation feature maps are obtained from the last convolution layer and normalized in each dimension. Each sub-
figure denotes the normalized gradient direction during training, and each line in these sub-figures represents a sample. The visualization
results during epoch 20 ∼ 100 are given to show the difference of gradient directions.

gradient bias in the original paper is conducted in 10 epochs
(E = 10). Nevertheless, the results show the distributions in
epoch 20 and epoch 100 are also similar. The visualization
results indicate that the activation feature map or gradient

direction of each sample changes slowly during the model
training, so that the approximate in Eqn. 14 has little influ-
ence on the calculation of gradient bias.

To further analyze this assumption quantitatively, we cal-



Figure S3. The heat map of the difference between gradient direc-
tions in various epochs. The darker color denotes the smaller dif-
ference of gradient directions. The experiment is conducted with
GSS-SB on CIFAR-10 with 40% noise, and the gradient switching
strategy is started at 15-th epoch.

Epochs 50 100 150

Gradient
Bias

∆gori 2.15× 102 5.65× 102 1.76× 103

∆ggss 1.20× 102 2.61× 102 6.53× 102

Epoch Range 50 ∼ 60 100 ∼ 110 150 ∼ 160

Gradient Direction
Difference 0.89 0.54 0.25

Table S2. The experimental analysis of gradient biases and gra-
dient direction differences in different training stages. The re-
sults are calculated by adding the absolute values, and the average
biases/difference are shown. The experiments are conducted on
CIFAR-10 and CIFAR-100 with 40% symmetric noise.

culate the differences of gradient directions during training.
In a total of 200 epochs of training, the heat map of gra-
dient direction differences is illustrated in Fig. S3. The
darker color denotes the smaller difference of gradient di-
rections. The gradient switching is implemented from the
15-th epoch. It can be seen the difference of gradient di-
rections is less in the late training period, which is consis-
tent with the expected results. Even in the early stage of
the training, the change of gradient directions is also small
within a few epochs.

Also, we compare the difference with the gradient bi-
ases in Table S2. During training, the gradient bias be-
comes larger, but the gradient direction difference becomes
smaller. So that the influence of the approximation also be-
comes smaller in the model training. Still, even in the early
stage (50-th epoch), the gradient direction difference caused

Algorithm 1: Gradient Switching Strategy with the
Single Branch (GSS-SB).

Input: Model weights w; The noisy dataset
D = {(x(n), ỹ(n))}Nn=1; The learning rate µ;
The training epoch E, and batch number
Nbatch; The updating weights λ1 and λ2.

1 Initialize: Let D(n) be the gradient direction pool of
n-th sample, initialized as D(n) = Onehot(ỹ(n));

2 for e = 1 to E do
3 for batch = 1 to Nbatch do
4 Fetch mini-batch data D′;
5 Select directions ŷe from D;
6 Update w = w − µ▽L(x, ŷe);
7 p = f(x;w),∀x ∈ D′

8 vor = pŷ(1− e/E);
9 vpr = pŷ(λ1e/E);

10 vrd = λ2e/E;
11 Update gradient direction pool

D = D + Yorvor + Yprvpr + Yrdvrd;
12 end
13 end

Output: w.

by the approximation (0.89) is much smaller than the gradi-
ent bias difference (95). And the difference is even smaller
in the later stage (150 ∼ 160 epoch), while the gradient
bias is larger than that in the early stage. In summary, the
approximation in Eqn. 14 has little effect on gradient biases.

C. Dataset Setting Details
This section shows more details of datasets. For syn-

thetic noisy datasets, two widely used benchmark datasets
are applied for better evaluation, including CIFAR-10 and
CIFAR-100 [3]. Synthetic noisy labels consist of two types,
including symmetric noise and asymmetric noise. Symmet-
ric noise is generated by randomly flipping labels with uni-
form distribution. Asymmetric noise generation needs to
take categories’ similarity into account, which varies from
datasets.

In this paper, we define some confusing category pairs in
each dataset as the target of generating asymmetric noise.
Specifically, there are four pairs in CIFAR-10 (truck ↔
automobile, bird ↔ airplane, cat ↔ dog, deer ↔ horse).
Samples of these category pairs have very similar features.
In CIFAR-100, 100 categories are divided into 20 super-
classes, including aquatic mammals, fish, flowers, food,
fruit and vegetables, household electrical devices, house-
hold, insects, large carnivores, large man-made outdoor
things, large natural outdoor scenes, large omnivores and
herbivores, medium-sized mammals, non-insect inverte-
brates, people, reptiles, small mammals, trees, vehicles 1



Algorithm 2: Gradient Switching Strategy with the
Dual Branches (GSS-DB).

Input: Dual branch weights w and w′; The noisy
dataset D = {(x(n), ỹ(n))}Nn=1; The learning
rate µ; The training epoch E, and batch
number Nbatch; The updating weights λ1

and λ2.
1 Initialize: Let D(n) and D′(n) be the gradient

direction pools of n-th sample, initialized as
D(n) = D′(n) = Onehot(ỹ(n));

2 for e = 1 to E do
3 for batch = 1 to Nbatch do
4 Fetch mini-batch data Dbatch;
5 Obtain small-loss subset D̄ that

|D̄| = R(e)|Dbatch|
6 Obtain small-loss subset D̄′ that

|D̄′| = R(e)|Dbatch|
7 Select directions ŷe from D;
8 Select directions ŷ′e from D′;
9 Update w = w − µ▽L(x, ŷ′e);

10 Update w′ = w′ − µ▽L(x, ŷe);
11 p = f(x;w),∀x ∈ D̄
12 p′ = f(x;w′),∀x ∈ D̄′

13 vor = pỹ(1− e/E);
14 v′or = p′ŷ(1− e/E);
15 vpr = pỹ(λ1e/E);
16 v′pr = p′ŷ(λ2e/E);
17 vrd = λ2e/E;
18 Update gradient direction pool
19 D = D + Y ′orv′or + Y ′prv′pr + Y ′rdvrd;
20 D′ = D′ + Yorvor + Yprvpr + Yrdvrd;
21 end
22 end

Output: w.

and vehicles 2. Since the sub-classes in each superclass are
especially similar, the asymmetric noise is generated within
each superclass. Since not all the categories are covered, the
overall asymmetric noise ratio is lower than the symmetric
one.

To evaluate the comprehensive performance of each
method with different severity of noise, this paper gener-
ates the symmetric noise from 20% to 80% and asymmetric
noise from 20% to 40%. And the quantitative evaluation
results are given in Section 6.1 of the original paper.

D. GSS Combination Details

The original paper proposes the GSS combinations with
the single branch, dual branches, and dual branches with
semi-supervised learning, denoted as GSS-SB, GSS-DB,

and GSS-SSL, respectively. This section will supplement
more details of these combinations.

D.1. GSS with Single Branch

As we introduced in Section 5.2 of the original paper,
GSS-SB is the simplest version of Gradient Switching Strat-
egy with the single branch. The flow of GSS-SB is shown
in Algorithm 1. In GSS-SB, all samples have their gradient
direction pool D updated by dynamic weights as follows:

vor = pỹ(1− e/E), (15)
vpr = pỹ(λ1e/E), (16)

vrd = λ2e/E, (17)

where pỹ denotes the predicted confidence on noisy labels,
E denotes the total amount of epochs, e denotes the current
epoch, and λ1, λ2 are parameters to control the tendency
of the gradient switching in GSS-SB. The parameter λ1 de-
termines the importance of predicted labels during training,
and the parameter λ2 determines the importance of random-
ness. Commonly, the gradient direction pool tends to the
direction of predicted labels, guaranteeing the accuracy of
the unfixed directions selected in every epoch. In datasets
with severe noise, the model predictions are less credible, so
more randomness should be added to the gradient direction
pool. The core effectiveness of GSS-SB is to prevent the
continuous damage of noise through the dynamic gradient
direction pool.

D.2. GSS with Double Branches

The framework of dual branches is combined with GSS
in GSS-DB to further prevent the gradient direction pool
from being damaged. The pseudo-code is given in Algo-
rithm 2. The GSS-DB applies two groups of gradient direc-
tion pools D and D′ for all samples. After fetching mini-
batch data in each iteration, the subsets of small-loss sam-
ples are selected based on the predictions of dual branches.
The gradient direction pools are updated alternately be-
tween two branches, which can increase the ability to pre-
vent damage from noisy labels.

In Co-teaching [2], the subset ratio R(e) = 1 −
min{µe/Ē, µ}, where µ denotes the noise ratio. So that
subset ratio equals 1 − µ after Ē-th epoch. Conversely,
GSS-DB will gradually turn uncertain samples to clean
samples with the principle gradient direction. The sub-
set ratio will increase after preliminary training and set as
R(e) = min(1 − µ + |e − Ē|/Ē, 1). In GSS-DB, the
preliminary training stage is similar to that in Co-teaching.
Afterward, the subset ratio is increased to 1 for gradually
utilizing all samples in training. The strategy of gradient
switching prevents the continuous damage of noise, which
allows the model to learn more information from all sam-
ples. That is the advantage of our GSS-DB compared to
existing methods with dual branches.



Algorithm 3: Gradient Switching Strategy with
Semi-Supervised Learning (GSS-SSL).

Input: Dual branch weights w and w′; The noisy
dataset D = {(x(n), ỹ(n))}Nn=1; The learning
rate µ; The training epoch E, and batch
number Nbatch; The updating weights λX ,
λU , λ′

X , λ′
U , λrd

X , and λrd
U .

1 Initialize: Let D(n) and D′(n) be the gradient
direction pools of n-th sample, initialized as
D(n) = D′(n) = Onehot(ỹ(n));

2 for e = 1 to E do
3 Obtain labeled set X and unlabeled set U based

on GMM(D, w′)
4 Obtain labeled set X ′ and unlabeled set U ′

based on GMM(D, w)
5 for batch = 1 to Nbatch do
6 Select directions ŷe from D;
7 Select directions ŷ′e from D′;
8 L = L(X , ŷ′e) + L(U , ŷ′e) + Lreg;
9 L′ = L(X ′, ŷe) + L(U ′, ŷe) + L′

reg;
10 Update w = w − µ▽L;
11 Update w′ = w′ − µ▽L′;
12 vor = pỹ(1− e/E);
13 v′or = p′ŷ(1− e/E);
14 vpr = {pXỹ (λX e/E), pUỹ (λUe/E)};
15 v′pr = {pX ′

ŷ (λ′
X e/E), pU

′

ŷ (λ′
Ue/E)};

16 vrd = {λrd
X e/E, λrd

U e/E};
17 Update gradient direction pool
18 D = D + Y ′orv′or + Y ′prv′pr + Y ′rdvrd;
19 D′ = D′ + Yorvor + Yprvpr + Yrdvrd;
20 end
21 end

Output: w.

D.3. GSS with Semi-Supervised Learning

To better train the model with uncertain samples, the
Semi-Supervised Learning framework is applied in GSS-
SSL. The pseudo-code given in Algorithm 3 shows the flow
of GSS-SSL. Referring to the settings in DivideMix [5],
GSS-SSL applies GMM [12] to distinguish confident sam-
ples and uncertain samples. But the labels of uncertain sam-
ples are not directly removed. In GSS-SSL, these samples
are trained by the targets of model predictions and unfixed
directions by weighting, which further prevents continuous
damage on the basis of the DivideMix.

As mentioned in the original paper, GSS-SSL also ap-
plies the dual branches so that the main process is consistent
with GSS-DB. Additionally, two updating strategies of gra-
dient direction pools are used for labeled samples and unla-
beled samples. The updating weights of the former samples

Figure S4. The ablation results with different weights of gradi-
ent direction pool updating in GSS-SB. The experiments are con-
ducted on CIFAR-10 with 40% noisy labels with GSS-SB. All re-
sults are the average accuracy with the error bar on the test set over
five experiments.

Figure S5. The ablation results with different weights of gradi-
ent direction pool updating in GSS-DB. The experiments are con-
ducted on CIFAR-10 with 40% noisy labels with GSS-DB. All
results are the average accuracy with the error bar on the test set
over five experiments.

are denoted as λX (λ′
X ), λrd

X , and the updating weights of
the latter samples are λU (λ

′
U ), (λ

rd
U ). λXandλ′

X denotes
the weights of labeled samples for two branches. Since
most labeled samples are credible, these weights are set
with small values. On the contrary, the unlabeled samples
are incredible, which requires to be rectified. So that (λrd

U )
is larger to prevent the model from being damaged in the
misleading gradient direction. After sufficient experiments,
the optimal weights are set as λU (λ

′
U ) = 0.2, λrd

U = 0.5.
More ablation study is conducted in Section E.

E. Ablation Study
The original paper conducts the ablation study on the ef-

fects of different updating weights and GSS combinations.
Due to the page limit, the experiments of updating weights
are only conducted on GSS-SB (shown in Fig. S4). So in
this section, we further explore the effects of different up-
dating weights of the gradient direction pool on GSS-DB
and GSS-SSL.

As described in the original paper and Section D, the



Figure S6. The ablation results with gradient direction pool up-
dating weights on labeled samples λX (λ′

X ) and λrd
X in GSS-SSL.

The experiments are conducted on CIFAR-10 with 40% noisy la-
bels with GSS-SSL. All results are the average accuracy with the
error bar on the test set over five experiments.

Figure S7. The ablation results with gradient direction pool up-
dating weights on labeled samples λU (λ

′
U ) and λrd

U in GSS-SSL.
The experiments are conducted on CIFAR-10 with 40% noisy la-
bels with GSS-SSL. All results are the average accuracy with the
error bar on the test set over five experiments.

dual branches in GSS-DB apply the same weights for up-
dating the gradient direction pools of all samples. So the
ablation study is conducted with various values of λ1 and
λ2. We use CIFAR-10 with 40% symmetric noisy labels for
evaluation, and the results are shown in Fig. S5. Compared
to GSS-SB, GSS-DB is less sensitive to updating weight
settings. With the single branch, the performance decreases
when λ1 < 1.5. The dual branches make the model more
robust that the performance only decreases when λ1 < 0.5.
Additionally, GSS-SB requires more randomness to prevent
the continuous damage from misleading gradient direction,
so that λ2 = 1.0 is optimal for model training. With dual
branches, GSS-DB has a more powerful ability to prevent
noise damage. Consequently, small randomness is optimal
that λ2 = 0.5.

Overall, the updating weights of gradient direction pools
λ1 and λ2 should be determined based on how much the
model will be affected by noise. For the single branch, the
model will be more likely to be damaged by noise, so a
larger value of λ2 is required to increase the randomness

of gradient directions. In contrast, the model with dual
branches is more robust to noise, and λ2 should be set as a
small value to guarantee the efficiency of training. In addi-
tion, the results seem to be insensitive to λ1, as long as λ1 is
larger than λ2. The model convergence will be reduced if λ1

is too small. According to sufficient experiments, λ1 = 2.0
is effective for GSS-SB and GSS-DB in most conditions.

For GSS-SSL, the labeled samples and unlabeled sam-
ples apply different weights to update the gradient direc-
tion pool. The weights for labeled samples are denoted as
λX (λ′

X ), λrd
X , and the weights for unlabeled samples are de-

noted as λU (λ
′
U ), (λ

rd
U ). The ablation study on each weight

is conducted with optimal values of all the other weights,
λX (λ′

X ) = λrd
X = 0.1, λU (λ

′
U ) = 0.2, λrd

U = 0.5. The
results are shown in Fig. S6 and Fig. S7.

The results in Fig. S6 show the effects with different up-
dating weights of labeled data. Since the labeled data se-
lected by GMM [12] commonly have credible labels, the
gradient direction pool of these samples should be more
stable. The figure verifies it since a smaller λrd

X can achieve
better performance. Compared to the results in GSS-SB and
GSS-DB, GSS-SSL is less sensitive to the updating weights
of labeled data. Still, with a smaller value of λX (λ′

X ), the
accuracy of GSS-SSL is improved and achieves SOTA per-
formance.

From the results in Fig. S7, updating weights of unla-
beled data show a greater influence on model performance.
The optimal settings are λU (λ

′
U ) = 0.2, λrd

U = 0.5. It is
different from GSS-SB and GSS-DB that the gradient di-
rection pools of unlabeled samples have more randomness.
Considering the labels in unlabeled samples are mostly
wrong, λrd

U should be set as a larger value than λU (λ
′
U ),

encouraging the model to explore in various directions to
prevent the continuous noise damage.

F. Supplemented Experiments
In this section, additional experiments are supplemented

to further explore the performance of GSS, including exper-
iments on datasets with instance-related noise, quantitative
evaluation with latest works, and training time comparison.

Training on datasets with instance-related noise is a chal-
lenging task, since this type of noise is highly related with
the sample characteristics. Actually, for datasets with real-
world noise including Clothing1M [15], WebVision [7],
and ILSVRC12, the noisy label is highly correlated with
the sample itself and can be regarded as instance-related
noise. We show the experimental results on these datasets
in the original paper. For further evaluation, experiments
on CIFAR-10 with 20% instance-related noise are also con-
ducted and shown in Table S3.

There are also some latest works for noisy-label learning,
including PSE [1], CDR [14], Sel-CL [6], and SOP+ [9].
Additional experiments are conducted for comparison,



Method CE Co-teaching DivideMix GSS-SSL (Ours)
Acc. (%) 86.85 88.56 91.74 92.59

Table S3. Experiments on CIFAR-10 with 20% instance-related
noise.

Method PSE CDR Sel-CL SOP+ GSS-SSL (Ours)
Acc. (%) 94.08 87.33 93.91 94.75 94.20

Table S4. Quantitative comparison with latest works. Experiments
are conducted on CIFAR-10 with 40% symmetric noise.

Method Baseline Co-teaching DivideMix GSS-SB GSS-SSL
Time (s) 64.11 72.14 79.47 69.36 81.10

Table S5. Training time comparison of GSS-SB and GSS-SSL
with existing methods. The average time of each epoch is shown
here. Experiments are conducted on CIFAR-10 with 40% sym-
metric noise.

which are shown in Table S4.
Also, consider the time consuming problem, we compare

GSS with existing methods by the average training time of
each epoch. From the results in Table S5 it can be seen
the training time of GSS-SB and GSS-SSL are not much
higher than other methods. That is because GSS achieve
gradient switching through flipping labels, which only leads
to a small increase in time.

G. Limitations of GSS
GSS has achieved significant improvement for noisy-

label learning but still has some limitations. The most cru-
cial limitation is that the hyper-parameters can be trivial to
be adjusted, especially in GSS-SSL with various weights
to gradient direction pool. Aiming at this limitation, we
conduct the ablation study on various selections of these
hyper-parameters in Section 6.2 of the original and Section
E of this supplementary material. The results show the per-
formance of GSS is insensitive to these hyper-parameters
in most cases. Additionally, a small value to updating the
direction pool will also improve the performance for noisy-
label learning. So a simple way to solve this limitation is
to gradually increase the updating weights to prevent noise
damage. In future work, we will consider adjusting the gra-
dient direction pool adaptively.
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