
Supplementary Material for On the Difficulty of Unpaired Infrared-to-Visible
Video Translation: Fine-Grained Content-Rich Patches Transfer

A. Overview
This supplementary material is organized as follows.

§ B introduces the detail information about the Infrared-
Adverse dataset. § C describes the process of our CPTrans
via pseudocode. § D illustrates the implementation details
including CPTrans and other approaches in the experiments.
We further evaluate our CPTrans on the Viper dataset as re-
ported in § E. § F shows more visualization results. Finally,
we discuss and analyze our limitation in § G.

B. InfraredCity-Adverse
The unpaired infrared-to-visible video translation task

aims to provide clear visible videos for most vision ap-
plications under various conditions, especially for adverse
weather conditions. However, most existing infrared-
related datasets (e.g., IRVI [7], InfraredCity [12]) focus
on clear days and nights while lacking data under se-
vere weather conditions, which leads to an incomprehen-
sive evaluation of the translation algorithm. Therefore, to
compensate for the lack of current benchmarks, we ex-
tend the existing dataset InfraredCity to more challeng-
ing adverse weather conditions (rain and snow), dubbed as
InfraredCity-Adverse1. Here we build the dataset with in-
frared videos, which is captured by the binocular infrared
color camera (DTC equipment) on raining and snowing
scenes, and visible videos from the InfraredCity dataset.

Rain. Rain is one of the most common adverse condi-
tion in the real world. We capture infrared videos in rainy
city streets, which contains various complex objects (e.g.,
buildings, cars). Although infrared sensors are capable of
stable imaging in diverse weather conditions, the contents
of the videos in rainy scenes are inconsistent with those on
clear days. There are noises such as raindrops and fog in the
rainy weather, resulting in a data distribution irregular with
that of clear weather. Thus, on the proposed rain scene, all
competitive methods need to overcome the huge semantic
gaps and noises to generate explicit visible videos. Exam-
ple videos are displayed on our github1. The total number
of infrared frames on the rain scene is 21356. To reduce

1The code and dataset are available at https://github.com/BIT-DA/I2V-
Processing

Table 4. The structure of InfraredCity-Adverse.

Scene Data Type Infrared Frame

Rain

Single 4262

Double 2143

Triplet 1421

Snow

Single 2834

Double 1419

Triplet 946

the negative effect of the repetition of similar frames, we
build the raining scene dataset via the selection by interval
sampling. Following [12], we design three data types: Sin-
gle, Double, and Triplet for the rain scene to be in line with
the input requirements of most image/video translation ap-
proaches. Detailed in Tab. 4.

Snow. Similar to rainy days, the environment of snowy
days is also different from the one in clear weather, which
is caused by the presence of noises such as snow trails and
snowflakes. Our snow dataset captures a real snowy day
scenario and contains noises mentioned above, which facil-
itates the evaluation on the performance of translation al-
gorithms in real snowy scenarios. Example videos could
be obtained on our github1. The total number of infrared
frames on the snow scene is 14226. Similarly, we perform
the sampling strategy on the snow dataset and design the
three data types: Single, Double, and Triplet. Detailed in
Tab. 4.

Comparison. IRVI [7] and InfraredCity-Lite [12] are
recently released datasets for unpaired infrared-to-visible
video translation. As for the IRVI dataset, the infrared
data is collected during the day. It has distinct infrared
videos without any noise. Similarly, the infrared videos
of the InfraredCity-Lite dataset are collected on clear and
overcast nights without any environmental noise. Thus,
their data distributions differ from those in adverse scenar-
ios. Our released InfraredCity-Adverse includes infrared
data from raining and snowing scenes, which can evalu-
ate the method’s performance in realistic adverse weather.
We hope the provided dataset can encourage the further re-
search on the infrared-related area.
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C. Algorithm CPTrans
We illustrate the training process with unpaired data in

Alg. 1. When the training is finished, we only need to utilize
the generator G for inference.

D. More Implementation Details
CPTrans. We adopt the resnet 9blocks, a ResNet-

based model with nine residual blocks, as the backbone
for generator G. Additionally, we utilize the patch-wise
discriminator D following [12], which is a variant of the
PatchGAN. As for the discriminator, we remove its mul-
tiscale operation but perform enhancement on content-rich
patches. Specifically, the y and ỹ = G(x) will be sent to
a pre-trained ViT [4] encoder, and we select the token em-
beddings on the fifth layer of the encoder, dubbed as T 5

y

and T 5
ỹ . Notably, we discard the class token embedding at

the beginning and obtain N = w × h token embeddings
on T 5

y and T 5
ỹ . Each token embedding of T 5

y has a corre-
spondence with a patch on the y, and it is similar for T 5

ỹ

and ỹ. Then, we send the T 5
y and T 5

ỹ to MLP networks
and access prediction scores {pi}Ni=1 and {p̃j}Nj=1. Besides,
ηratio and λinc are applied on the content-aware optimiza-
tion module for controlling the enhancement of attentions
to content-rich patches. We conduct extensive research and
set ηratio = 40%, λinc = 8.0. Additionally, the γstride
in content-aware temporal normalization is set as 20.0 for
a distinct shift. λ1 and λ2 in Eq. (11) are set to 6.0 and
10.0, respectively. We train CPTrans for 100 epochs with
the learning rate of 2× 106 and the Adam optimizer, using
a batch size of 1.

Other Methods. We utilize the official codes of Cycle-
GAN2 [5], CUT3 [8], F/LSeSim4 [13], Recycle-GAN5 [2],
UnsupRecycle6 [10] and I2V-GAN7 [7]. Similarly, the
resnet 9blocks is applied as the generator for all methods.
As described in their original papers, except ROMA, they
use the 70× 70 PatchGAN, which aims to classify whether
70× 70 overlapping image patches are real or fake. ROMA
proposes a new patch-wise discriminator with a multiscale
operation for different sizes of receptive fields. The batch
size of all methods is set as 1. The learning rate values
are not the same for different methods, and we follow the
settings in the respective papers. Since ROMA [12] and
Mocycle-GAN [3] haven’t released the code, we implement
them ourselves following the training process and imple-
mentation from their original paper.

2https://github.com/junyanz/pytorch-CycleGAN-
and-pix2pix

3https : / / github . com / taesungp / contrastive -
unpaired-translation

4https://github.com/lyndonzheng/F-LSeSim
5https://github.com/aayushbansal/Recycle-GAN
6https://github.com/wangkaihong/Unsup_Recycle_

GAN
7https://github.com/BIT-DA/I2V-GAN

Table 5. Segmentation score (%) of our CPtrans and other methods
for video-to-labels translation on Viper.

Segmentation score (%) of Video-to-Labels
Metric Method Day Sunset Rain Snow Night All

AC

Cycle-GAN [5] 7.5 6.2 6.1 6.4 4.0 6.6
MUNIT [13] 13.4 14.7 16.8 15.4 11.7 14.4

Recycle-GAN [2] 13.6 13.8 11.5 13.6 6.9 13.4
STC-V2V [3] 12.2 13.5 13.3 13.7 6.7 12.3

Unsuprecycle [10] 16.6 17.2 15.8 16.1 8.3 16.1
Unsupmunit [10] 18.4 19.8 19.1 18.5 10.1 18.3

Ours 20.0 25.6 21.4 19.4 19.5 20.1

IoU

Cycle-GAN [5] 4.1 3.7 3.3 3.6 1.9 3.8
MUNIT [13] 7.6 10.2 12.0 11.0 7.4 9.7

Recycle-GAN [2] 9.0 10.9 8.1 9.6 3.6 9.5
STC-V2V [3] 8.1 10.6 9.2 10.2 3.9 9.1

Unsuprecycle [10] 11.9 13.5 11.8 12.6 5.1 12.3
Unsupmunit [10] 13.3 15.6 13.9 14.2 6.5 13.7

Ours 14.1 20.4 14.3 14.7 12.8 14.4

MP

Cycle-GAN [5] 29.7 32.9 34.9 28.6 17.9 28.3
MUNIT [13] 39.9 66.5 70.5 64.2 50.7 56.4

Recycle-GAN [2] 46.9 69.8 60.1 56.9 31.9 52.1
STC-V2V [3] 41.0 67.5 63.0 61.8 36.1 52.5

Unsuprecycle [10] 56.3 76.9 71.8 67.9 48.8 63.2
Unsupmunit [10] 58.7 78.6 74.1 71.1 44.8 64.3

Ours 63.4 81.8 73.0 67.2 61.5 65.7

E. Evaluation on Viper
Viper [9] consists of virtual world data synthesized from

a video game. Each frame is annotated with pixel-level se-
mantic labels. According to different weather conditions, it
is divided into five different scenes: day, sunset, rain, snow,
and night. Following [2], we reduce the resolution of each
frame from 1920 × 1080 to 256 × 256 and take 57 video
clips for training and the other 22 clips for testing.

To further measure the translation capability of our CP-
Trans, we evaluate it on the Viper dataset, which also re-
quires every pixel of the generated results to be correct.
From Tab. 5, we can see that our method outperforms most
other techniques. Especially in the night scene, we achieve
improvements of 93.1% on AC, 96.9% on IoU, and 37.3%
on MP, respectively, compared with Unsupmunit [10].

F. More Visualization Results
F.1. Long-tail Effect and Content-rich Patches

We illustrate the visualization of pixel category distribu-
tion on dataset InfraredCity [12], which is the largest dataset
for unpaired infrared-to-visible video translation, as shown
in Fig. 9. It indicates that real-world training data usually
exhibits long-tailed distribution.

Since gradients from different patches tend to vary [1,6]
in the optimization process, plus the existing long-tail effect
on the real world, the optimization can be prejudiced against
content-rich patches (i.e., minority pixels). We visualize the
most deviated parts in Fig. 10, and it confirms the effective-
ness of our CO module in optimizing content-rich patches.
Our CPTrans encourages optimizing the model along the



Algorithm 1 Training process of CPTrans

Input: Source domain {x}; Target domain{y}; Models G,D; Feature extractor F ; Max iteration: Niter

Output: Translated results {G(x)} ▷ G(x) looks similar to the target domain while having the same content as x.
1: for n = 1 to Niter do
2: Sample x from {x}, y from {y}; ▷ x, y are unpaired data, and are randomly selected.
3: Generate ỹ = G(x) via generator G;
4: Obtain token embeddings Ts and Tt from x and ỹ via feature extractor F , respectively;
5: Compute Lcs through Eq. (1);
6: Compute the prediction scores {pi}Ni=1, {p̃j}Nj=1 from y, ỹ, through the discriminator D, respectively;
7: Obtain gradients {∇θD log pi}Ni=1, {∇θD log(1− p̃j)}Nj=1 via calculating ∇θDL

patch
adv through Eq. (4);

8: Calculate cosine similarities {δi}Ni=1, {δ̃i}Ni=1 according to Eq. (5);
9: Get the weight maps {wi}Ni=1, {w̃j}Nj=1 through Eq. (6);

10: Utilize weight maps to calculate Lpatch
co-adv through Eq. (7);

11: Randomly sample z from a standard Gaussian distribution N (0, 1);
12: Generate content-aware optical flow Fcontent with z and w̃ through Eq. (9);
13: Calculate Lctn through Eq. (10);
14: Compute L = Lpatch

co-adv + λ1 · Lcs + λ2 · Lctn with SGD optimization;
15: end for

InfraredCity

City

Highway

Figure 9. Left: Visualization of pixel category distribution on
dataset InfraredCity [7]. We conduct semantic segmentation via a
pre-trained SegFormer [11] on all visible video frames of Infrared-
City and predict all pixels according to the predefined categories in
ADE20K [14]. Right: We additionally illustrate the pixel category
distributions of specific scenarios (i.e., City and Highway).

gradients of content-rich patches that are no longer the most
deviated parts.

F.2. Qualitative Comparison

We display more qualitative comparisons in Fig. 11 with
other methods. Our CPTrans yields visually pleasant out-
comes with more details.

F.3. Visual Examples

We display more video translation results on our github1,
including the outputs of translation between infrared and
visible videos, the results of translation between videos and
labels, object detection videos, and video fusions.

G. Limitation

One potential limitation of our translation methods,
which is shared with the existing SOTA, is the lack of di-
versity in the appearance of the generated videos. Due
to the thermal imaging mechanism of infrared sensors, all
video frames are covered by the gray-style appearance, and
the data diversity mainly comes from the structure differ-
ence. For example, our CPTrans provides black looks for
most generated cars while red appearance for most trans-
lated trucks. Similar structures in the generated results al-
ways have a limited appearance. How to make the generated
results as diverse as real visible videos will be our further
exploration in future research.
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Figure 10. Visualization for the influence of our Content-aware Optimization for gradients. We select the most deviated ηratio patches to
display based on the cosine similarity to the final gradient. The visualization results indicate that the most deviated parts are usually the
content-rich patches when trained without our CO module. Significantly, the bottom figure shows that the optimization is controlled by the
major pixels (i.e., sky pixels). In contrast, our CPTrans encourages optimizing the model along the gradients of content-rich patches that
are no longer the most deviated parts.
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Figure 11. Qualitative comparisons with different methods. Our outputs show cleaner and more visual details compared to others on
diverse scenes, especially the adverse ones (the bottom three scenes).
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