
Supplementary Material

A. Implementation details
A.1. Architectures

In our main experiments we use supervised and self-
supervised pre-trained ResNets from [52] and [7] respec-
tively. We implement the expert retrieval systems using a
ViT-B/16 CLIP model [48] and a ResNet50 DINO model
[7] (see Tab. 5 for a zero-shot evaluation on both the down-
stream fine-grained datasets as well as on the auxiliary
datasets used in A). Note that the cost to search in the
auxiliary dataset A is linear with its size and efficient ap-
proximate search methods exist [23,27], however, when the
number of images to search is < 10M a brute force solu-
tion is still very fast since image embeddings can be stored
in GPU memory and the search simply involves a matrix
multiplication.

Moreover, for a fair comparison with [8], only in
the TTA experiments, we follow [8, 35] and add a 256-
dimensional bottleneck consisting of a fully-connected
layer followed by a BatchNorm layer after the pre-trained
backbone, and apply WeightNorm on the classifier. We
consider the lower dimensional bottleneck as a projection
layer and therefore drop the original projection heads used
in MoCo [24] without any performance drop.

A.2. Memory bank
In this section we describe the memory bank introduced

in Sec. 3.1.2. We use a memory bank as in [8, 24, 34] to
allow for a larger set of negative examples without requiring
more forward passes (and more GPU memory) and to store
previously computed logits that are subsequently used to get
“filtered” pseudo-labels.

We maintain a memory queue M of size mb through-
out training. M contains both the last layer features g of
samples from T and A and the logits of samples from T

according to the current model fA|T .

M =
n
g(t0(x)), fA|T (t

0(x))
���x 2 T

o
[
n
g(t0(x0))

���x0 2 A

o

(5)
where t

0 is a weak augmentation, T the target dataset and
A the auxiliary external dataset. Note that we do not keep
track of pseudo-labels (or logits) in A since we do not as-
sume that A contains the same label space of T . M is ini-
tialized with features and probabilities of mb randomly se-
lected target samples. And, at each mini-batch we update
M by enqueue and dequeue similar to [8, 24, 34], where
the momentum encoder is used with m = 0. The memory
bank is updated on-the-fly with the current mini-batch and,
together with features and logits. We also keep track of the
unique image IDs that are used to aggregate logits and avoid
using same image as negative samples. Furthermore, since

our retrieval system R is fixed throughout training, for each
sample in T (indexed by its unique ID) we associate a list
of nearest neighbors in A that does not change and we use
it to efficiently find the nearest neighbours present in M at
each iteration.

B. Expert retrieval systems zero-shot evalua-
tion

In this section we compare the zero-shot performance
of our retrievers both on the fine-grained and the auxiliary
datasets used to build A. First, for each dataset in the list of
fine-grained/auxiliary datasets we compute image embed-
dings using an embedding model (ViT-B/16 or ResNet50
DINO) without using any data augmentation. This process
is very fast, though it scales linearly with the dataset size,
and its cost is essentially the cost of a single forward pass for
each image to be indexed. Second, we store all the image
embeddings in memory (this typically requires 100 times
less memory than storing an image at 224⇥ 244 resolution)
as well as their labels. Third, for each test image on a given
dataset we compute its k-NNs from the list of embeddings
and aggregate the corresponding labels (majority voting).

In Tab. 5, we compare the retrieval models with expert
models that are trained on each dataset independently. Note
that the CLIP model is strictly better than DINO in zero
shot Top1 accuracy and it also competes with a fully trained
model on multiple datasets. As we observed in Tab. 3 the
stronger the retrieval the better the performance since more
discriminative negative samples are used in the contrastive
objective Equation (1).

Figure 6. Visualization of samples retrieved from A. Top row:
First panel, distribution of CLIP similarity scores on A for the
given query image. Third image, low CLIP score, forth image
high similarity. Bottom row: 7-th closest image to the given query
according to CLIP and DINO. Their top ranked images are often
the same but DINO’s ranking gets worse faster. Indeed, on the
datasets composing A, DINO is a weaker zero-shot retrieval sys-
tem than CLIP Tab. 5.

C. Tuning details
In this section we report the hyper-parameters that we

use both for our training-time and test-time adaptation ex-
periments. In particular, for train-time experiments we used



Table 5. How expert are the retrieval systems? Retrievals Top1
Accuracy (%) on the best number of k-NNs. We treat the number
of NNs as a hyper-parameter and report the highest accuracy re-
sults where k is selected on a small validation dataset (10% of the
training dataset). Furthermore, we report the accuracy of strong
experts models ResNet50 (RN50) and ResNet101 (RN101) trained
independently on each dataset of the external pool [18].

Dataset CLIP DINO Expert [18]

External data pool

ImageNet1k 72.5 73.1 77.5 (RN101)

iNaturalist 41.3 38.1 75.4 (RN101)

Food101 89.1 67.1 88.0 (RN101)

NWPU-RESISC 45 93.0 88.3 96.5 (RN101)

Logo 2k 83.8 35.6 78.5 (RN101)

Fine-grained datasets

Stanford Cars 72.3 21 93.4 (RN50)

Stanford Dogs 70.9 68.4 92.0 (RN50)

CUB200 68 67.8 78.3 (RN50)

MIT67 86 71.6 78.9 (RN50)

FGVC-Aircrafts 45.5 36 85.4 (RN50)

the standard 80/20 train/val splitting, and for test-time ex-
periments we follow [8].

C.1. Train-time model adaptation with retrieval
In our train-time experiments we consider a labelled

dataset S and a large auxiliary dataset of images A (see
Sec. 4.1). The goal is to adapt a generic pre-trained model
to the downstream labelled task S. The performance is eval-
uated on held out data T that is not used for further adap-
tation. This mimics the typical model customization sce-
nario (transfer learning [1,18]) solved with supervised fine-
tuning. We pick S to be a labelled fine-grained classification
dataset from the ones listed in Sec. 4.1.

In this scenario, we optimize our models2 across dif-
ferent datasets3 using SGD with momentum 0.9 and we
use linear warm-up cosine annealing learning rate (we use
4 warm-up epochs, start learning rate 1e-5 and minimum
learning rate 1e-6), other hyper-parameters are reported in
Tab. 6. We fix mb to 16k samples.

C.2. Test-time model adaptation with retrieval
In our test-time experiments we evaluate how well a

given pre-trained model can adapt using an unlabelled
dataset T . In particular, we are given a labelled dataset S
that represents the downstream task and has the same la-

2 For consistency, we keep the same hyper-parameters even when using
the self-supervised pre-trained ResNet50 from [7].

3 In case of Sup. FT 20%, to reduce the risk of over-fitting, we decrease
the number of epochs to 30 and consider an halved batch size.

bel space as T but its covariates are shifted. As in previous
experiments the auxiliary data pool A is taken as the con-
catenation of the datasets listed in Sec. 4.1. We evaluate
downstream performance with Top1 accuracy on different
domains for DomainNet-126 and across different classes for
VisDA-C.

Also, in this case we train our models4 on differently
sized target datasets5 use SGD with momentum 0.9 and we
use linear warm-up cosine annealing learning rate (we use
4 warm-up epochs, start learning rate 1e-5 and minimum
learning rate 1e-6), other hyper-parameters are reported in
Tab. 6. Since both target datasets for TTA are larger than the
fine-grained used in our train-time experiments, we increase
the size of the memory bank to 64k samples. While, when
working with 1% and 10% of T we use mb = 16k.

D. Datasets details
Train-time adaptation and auxiliary datasets We
choose both our fine-grained and the auxiliary datasets such
that they cover different domains and are publicly available
for download. Detailed data statistics are reported in Tab. 7.

Test-time adaptation datasets Following previous liter-
ature on test-time domain adaptation [8, 57, 65] we use
VisDA-C [46] and DomainNet-126 [45] for evaluating our
method on TTA and for comparing against baselines. Since
DomainNet has noisy labels, we follow [8] and use a subset
of it that only contains 126 classes from 4 domains (Real,
Sketch, Clipart and Painting). We therefore evaluate our
method on 7 domain shifts constructed from these 4 do-
mains. Only for VisDA-C we compare the per-class top-1
accuracy, and then aggregate them by averaging.

E. Experiments design
In this section we further discuss the main motivations of

our experimental study and the main baseline methods we
used to evaluate T3AR .

Fairness of comparison with existing adaptation meth-
ods. Our experiments are aimed at showing the value of
using a new problem formulation for model adaptation that
allows retrieval of external information. Hence, rather than
aiming at comparing against other algorithms in similar set-
tings, we use existing Train- or Test-Time algorithms to pro-
vide strong baselines to quantify what is the value of addi-
tional data for downstream adaptation. Our main contribu-
tion is to show that this setting can significantly improve ac-
curacy, while still being widely applicable (e.g., unlabelled

4 In the TTA experiment, for consistency with the literature, we do not
use backbones pre-trained with self-supervised objectives [7].

5 In case of TTA on 1% and 10%, to reduce the risk of over-fitting, we
decrease the number of epochs to 30 but do not reduce the batch size.



Table 6. Detailed hyper-parameters configurations. Ref. refers to the experiment (Table and adaptation method) where the model is
mentioned. Pre-tr. Arch. describes the architecture and the pre-training objective used. Pre-tr. data refers to the pre-training data used to
build the pre-trained architecture. Target data refers to the downstream classification dataset used for evaluation. For TTA it is the same as
the pre-training dataset. LR is the base learning rate (with linear ramp-up and cosine decay and SGD with momentum 0.9). WD is weight
decay. MixUp refers to the amount of data augmentation used, where 0. corresponds to no Mixup while 1. is the maximum amunt of data
augmentation allowed. Batch Size is the batch size considered (splitted across multiple GPUs, 8 Tesla V100).

Train-Time Adaptation
Ref Pre-tr. Arch. Pre-tr. data Target data LR WD Mixup Batch Size Epochs

Tab. 1, Sup. FT 3 Sup. RN50 2 IN1k Stanf. Cars 0.1 0.01 0.1 1024 100
Tab. 1, Sup. FT 3 Sup. RN50 2 IN1k Aircrafts 0.1 0.01 0.1 1024 100
Tab. 1, Sup. FT 3 Sup. RN50 2 IN1k CUB200 0.1 0.01 0. 1024 100
Tab. 1, Sup. FT 3 Sup. RN50 2 IN1k MIT-67 0.1 0.01 0.1 1024 100
Tab. 1, Sup. FT 3 Sup. RN50 2 IN1k Stanf. Dogs 0.01 0.01 0. 512 100
Tab. 1, T3AR 3 Sup. RN50 2 IN1k Stanf. Cars 0.1 1e-4 0. 1024 100
Tab. 1, T3AR 3 Sup. RN50 2 IN1k Aircrafts 0.1 1e-4 0. 1024 100
Tab. 1, T3AR 3 Sup. RN50 2 IN1k CUB200 0.1 1e-4 0. 1024 100
Tab. 1, T3AR 3 Sup. RN50 2 IN1k MIT-67 0.1 1e-4 0. 1024 100
Tab. 1, T3AR 3 Sup. RN50 2 IN1k Stanf. Dogs 0.01 1e-4 0. 512 100

Test-Time Adaptation
Ref Arch. Pre-tr. data Target data LR WD MixUp Batch Size Epochs

Tab. 2, T3AR 3 Sup. RN50 4 DomainNet-126 DomainNet-126 0.1 1e-4 0. 1024 30
Tab. 2, T3AR 3 Sup. RN50 4 VisDA-C VisDA-C 0.1 1e-4 0. 1024 30

Table 7. The number of training images, testing images and classes as well as the URL to download the dataset are listed below. The top
part contains the auxiliary datasets in A, the middle part lists our fine-grained datasets and the bottom part contains test-time adaptation
datasets.

Dataset Training Images Testing Images # Classes URL
NWPU-RESISC45 [14] 25,200 6300 45 https://www.tensorflow.org/datasets/catalog/resisc45

Food-101 [5] 75,750 25,250 101 https://www.tensorflow.org/datasets/catalog/food101

Logo 2k [58] 134,907 32,233 2341 https://github.com/msn199959/Logo-2k-plus-Dataset

iNaturalist [25] 265,213 3030 1010 https://github.com/visipedia/inat_comp

iMaterialist [41] 965,782 9639 2019 https://github.com/malongtech/imaterialist-product-2019

Imagenet [17] 1,281,167 50,000 1000 http://image-net.org/download

CUB-200 [56] 5994 5794 200 http://www.vision.caltech.edu/visipedia/CUB-200-2011.html

Stanford Cars [31] 8144 8041 196 https://ai.stanford.edu/˜jkrause/cars/car_dataset.html

FGVC-Aircrafts [29] 6667 3333 100 https://www.robots.ox.ac.uk/˜vgg/data/fgvc-aircraft/

CUB200 [29] 5994 5794 200 https://www.vision.caltech.edu/datasets/cub_200_2011/

MIT-67 [29] 5360 1340 67 https://web.mit.edu/torralba/www/indoor.html

Stanford Dogs [29] 12000 8580 120 http://vision.stanford.edu/aditya86/ImageNetDogs

DomainNet-126 [8, 45] 142334 - 126 http://ai.bu.edu/M3SDA/

VisDA-C [46] 152397 55388 12 https://github.com/VisionLearningGroup/taskcv-2017-public

images with a wide domain coverage are readily available
from web-scale datasets).

Train time experiments In the training time experiments
we are given a pre-trained model on some pre-training data
(pre-trained either with supervision or self-supervision), a
labelled dataset S and an unlabelled target dataset T . The
goal is to adapt the model so that its performance on T is
high. This is the standard transfer learning [1, 18] setting.
We therefore use supervised fine-tuning as strong baselines

(with hyper-parameter search Tab. 6). However, note that
T3AR is allowed to leverage an auxiliary unlabelled dataset
A to further improve adaptation. In general, supervised
fine-tuning methods are not designed to exploit side infor-
mation in A. In this case one can resort to semi-supervised
techniques to leverage a large set of unlabelled data (e.g.
FixMatch [51] or CoMatch [34]). However, these methods
cannot be applied in this scenario, since they assume that the
labelled dataset S and the unlabelled dataset A are sampled
from the same distribution. In our setting, A is more general

https://www.tensorflow.org/datasets/catalog/resisc45
https://www.tensorflow.org/datasets/catalog/food101
https://github.com/msn199959/Logo-2k-plus-Dataset
https://github.com/visipedia/inat_comp
https://github.com/malongtech/imaterialist-product-2019
http://image-net.org/download
http://www.vision.caltech.edu/visipedia/CUB-200-2011.html
https://ai.stanford.edu/~jkrause/cars/car_dataset.html
https://www.robots.ox.ac.uk/~vgg/data/fgvc-aircraft/
https://www.vision.caltech.edu/datasets/cub_200_2011/
https://web.mit.edu/torralba/www/indoor.html
http://vision.stanford.edu/aditya86/ImageNetDogs
http://ai.bu.edu/M3SDA/
https://github.com/VisionLearningGroup/taskcv-2017-public


Table 8. Classification accuracy (%) on 7 domain shifts of DomainNet-126. All methods use ResNet-50 backbone. Bold is the highest.
Performance of methods from the literature are taken from the cited papers [8, 26, 28, 35]. In Tab. 2 we report the accuracy as the number
of samples available in T decreases.

Method Source-free R!C R!P P!C C!S S!P R!S P!R Avg.
MCC [26] no 44.8 65.7 41.9 34.9 47.3 35.3 72.4 48.9

Source only - 55.5 62.7 53.0 46.9 50.1 46.3 75.0 55.6
TENT [57] yes 58.5 65.7 57.9 48.5 52.4 54.0 67.0 57.7
SHOT [35] yes 67.7 68.4 66.9 60.1 66.1 59.9 80.8 67.1

AdaContrast [8] yes 70.2 69.8 68.6 58.0 65.9 61.5 80.5 67.8
T3AR (w/o retrievals) yes 68.5 67.9 63.4 53.1 63.9 52.7 80.4 64.3

T3AR (Ours) yes 70.2 70.0 66.8 60.9 64.1 59.8 81.0 67.5

Table 9. Classification accuracy (%) on VisDA-C train ! val. All methods use ResNet-101 backbone except the on-target rows, which use
ResNet-18 as student network. Bold is the highest; underline is the second highest. Performance of methods from the literature are taken
from the cited papers [8, 26, 28, 35]. In Tab. 2 we report the accuracy as the number of samples available in T decreases.

Method source-free plane bcycl bus car horse knife mcycl person plant sktbrd train truck Avg.
CAN [28] no 97.0 87.2 82.5 74.3 97.8 96.2 90.8 80.7 96.6 96.3 87.5 59.9 87.2
MCC [26] no 88.7 80.3 80.5 71.5 90.1 93.2 85.0 71.6 89.4 73.8 85.0 36.9 78.8

Source only - 57.2 11.1 42.4 66.9 55.0 4.4 81.1 27.3 57.9 29.4 86.7 5.8 43.8
SHOT [35] yes 95.3 87.5 78.7 55.6 94.1 94.2 81.4 80.0 91.8 90.7 86.5 59.8 83.0
+ On-target yes 96.0 89.5 84.3 67.2 95.9 94.2 91.0 81.5 93.8 89.9 89.1 58.2 85.9

AdaContrast [8] yes 97.0 84.7 84.0 77.3 96.7 93.8 91.9 84.8 94.3 93.1 94.1 49.7 86.8
+ On-target yes 97.2 87.0 86.7 81.7 95.5 91.6 93.5 86.6 95.3 90.9 92.8 47.9 87.2

T3AR (w/o retrievals) yes 90.3 83.9 72.4 73.0 93.1 88.9 82.6 82.4 90.1 87.8 90.3 40.5 81.3
T3AR (Ours) yes 96.8 87.5 86.2 74.8 96.7 90.5 93.8 82.4 91.7 91.3 91.1 45.9 85.7

Figure 7. Classification Top1 Accuracy (%) of test-time adapta-
tion methods on DomainNet-126 as the number of available target
data T increases. We show that exploiting retrieved samples helps
T3AR especially in the low data regime.

and does not need to be sampled from the same distribu-
tion as S (A can contain many more concepts than the ones
present in S). Therefore, a reasonable baseline is to allow
a fine-tuning method to leverage A somehow. The easiest
way to do this is by using the whole dataset A to pre-train
the model. Since A is, in general, unlabelled, we use a self-
supervised objective function (DINO [7]). Then, this pre-

Table 10. Comparison of T3AR with a self-supervised model pre-
trained on A and then fine-tuned on S. We observe that the average
accuracy of T3AR outperform the retraining paragon.

Dataset Stanf. Cars CUB200 MIT67

Self-Sup. pre-tr. on A 91.4 79.2 74.6
T3AR 93.0 80.3 75.9

trained model is used as starting checkpoint for fine-tuning
on S. In this way, the final adapted model contains in its
weights both information on the samples from A and sam-
ples from S exactly as in the case of T3AR . We call this
adaptation strategy Self-Sup. pre-training on A and compare
it with T3AR in Tab. 10. Note that T3AR outperforms this
paragon. This suggests that, while pre-training a model on
as many data as possible is a strong baseline, it is possible to
further improve downstream performance by looking back
at pre-training data after the downstream ones are available
(this observation is aligned with empirical results in [54]).

Test time experiments In the test time experiments we
are given a pre-trained model on some labelled dataset S
consisting of source data and an unlabelled target dataset
T . The goal is to adapt the model to T (without using S).
This is the standard test-time adaptation setting [8, 35, 57].
We therefore compare T3AR with strong TTA baselines.



Furthermore, as typically done in the literature, we add a
direct comparison with UDA methods [26, 28], these allow
the method to look back at S once T is obtained. The results
are reported in Tab. 2, Tab. 8 and Tab. 9.

Datasets subsampling To test the efficacy of external
data both in train and test time experiments we tested our
method and baselines using both full sized and subsampled
downstream datasets. In particular, we subsampled each
dataset using stratified sampling.

F. Detailed results on TTA experiments
In Tab. 8 and Tab. 9 we report Top1 accuracy on all the

domains in DomainNet-126 and on all the classes in VisDA-
C. We compare our method with state-of-the-art UDA and
TTA methods.

In Tab. 8 our method outperforms MCC even though it
has not access to the source datasets. Our method also com-
pares favourably with TTA baselines, being behind only to
AdaContrast on the entire dataset size but being the best
when fewer samples are available during adaptation Tab. 2.
Our method performs better than others when only 1% and
10% of the datasets are allowed for adaptation since it lever-
ages external information from the retrieved samples. In
fact, all other methods only rely on synthetic data aug-
mentations to drive the learning process, and therefore, are
not fully able to describe the complex target data manifold
when data are limited. Interestingly, as more samples are
allowed to be used, synthetic data augmentations seems to
suffice and the performance of other methods gets increas-
ingly better. We note that our method achieves the best per-
formance on 3 out of 7 domain shifts and it is on par with
AdaContrast on one (R!C).

In Tab. 9 we compare our method on the VisDA-C adap-
tation dataset. It gets the best accuracies on the bcycl
class and outperforms AdaContrast (a strong TTA adapta-
tion baseline [8]) on 4 our of 12 classes. Furthermore, Tab. 2
we show, once again, that our method compares favourably
w.r.t. the baselines when few samples are allowed for adap-
tation.

Sensitivity to the number of retrievals In Fig. 8 we
study the sensitivity of T3AR as the number of retrieved
nearest neighbors increases. The x-axis represents the
number of number of retrievals allowed per sample, with
NNs = 1 we can retrieve as many samples as there are in
the target dataset, with NNs = 2 twice its size, etc. We
also report the performance of randomly retrieving as many
samples as there are in the target dataset (diamond mark-
ers at NNs = 0). Our results show a diminishing return
in performance as the number of NNs increases. Since re-
trieving more samples increases (linearly) adaptation time,

Figure 8. Accuracy as a function of the number of the re-
trievals. Classification Top1 Accuracy (%) of T3AR on train
time adaptation on fine-grained classifications datasets as a func-
tion of the number of retrieved nearest neighbors. We denoted
with diamonds the reference performance when random retrievals
are used, in this case the number of retrievals is 1. Note that as
the number of retrievals increases, as well as the adaptation time,
T3AR saturates its performance around 2-5 retrievals across dif-
ferent datasets.

our experiments suggest that a good trade-off, that holds
across different datasets and allows to discount compute
over marginal accuracy improvements, is to retrieve twice
as many samples as the target datasets.

F.1. Main limitations
In our ablation studies we have showed that adding

samples from A to adapt a downstream model leads to
improved downstream performance on various adaptation
benchmarks. Nonetheless, the user is responsible to bring
in relevant data A (as relevant as possible to improve the
contrastive loss on negative pairs) and to maintain A as
it grows larger and larger. In practice, there is no bound
on the size of A and even if similarity based retrievals are
very fast, their throughput staturates as more samples are
added. We leave to future work how to leverage fast ap-
proximate searches [23, 27] on large indexed databases and
fast database re-indexing.


	. Introduction
	. Related problems
	. Key ideas and contributions
	. Related work
	. Method
	. Learning objective
	Retrieval-augmented objective function
	Supervised/weakly-supervised objective

	. Experiments
	. Experimental setup
	. Train time model adaptation with retrieval
	. Test time model adaptation with retrieval
	. Ablation studies

	. Conclusions


	. Implementation details
	. Architectures
	. Memory bank
	. Expert retrieval systems zero-shot evaluation
	. Tuning details
	. Train-time model adaptation with retrieval
	. Test-time model adaptation with retrieval
	. Datasets details
	. Experiments design
	. Detailed results on TTA experiments
	. Main limitations






